Abstract

The emergence of multicellularity in Animalia is associated with increase in ROS and expansion of tRNA-isodecoders. tRNA expansion leads to misselection resulting in a critical error of L-Ala mischarged onto tRNAThr, which is proofread by Animalia-specific-tRNA Deacylase (ATD) in vitro. Here we show that in addition to ATD, threonyl-tRNA synthetase (ThrRS) can clear the error in cellular scenario. This two-tier functional redundancy for translation quality control breaks down during oxidative stress, wherein ThrRS is rendered inactive. Therefore, ATD knockout cells display pronounced sensitivity through increased mistranslation of threonine codons leading to cell death. Strikingly, we identify the emergence of ATD along with the error inducing tRNA species starting from Choanoflagellates thus uncovering an important genomic innovation required for multicellularity that occurred in unicellular ancestors of animals. The study further provides a plausible regulatory mechanism wherein the cellular fate of tRNAs can be switched from protein biosynthesis to non-canonical functions.

Data availability

All the data used in the manuscript is available as source files

Article and author information

Author details

  1. Santosh Kumar Kuncha

    Structural Biology, CSIR-Centre for Cellular and Molecular Biology, hyderabad, India
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2538-8342
  2. Vinitha Lakshmi Venkadasamy

    Structural Biology Laboratory, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
    Competing interests
    No competing interests declared.
  3. Gurumoorthy Amudhan

    Structural Biology Laboratory, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
    Competing interests
    No competing interests declared.
  4. Priyanka Dahate

    Structural Biology Laboratory, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
    Competing interests
    No competing interests declared.
  5. Sankara Rao Kola

    Structural Biology Laboratory, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
    Competing interests
    No competing interests declared.
  6. Sambhavi Pottabathini

    Structural Biology Laboratory, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
    Competing interests
    No competing interests declared.
  7. Shobha P Kruparani

    Structural Biology Laboratory, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8955-1647
  8. P Chandra Shekar

    Structural Biology Laboratory, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
    Competing interests
    No competing interests declared.
  9. Rajan Sankaranarayanan

    Structural Biology Laboratory, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
    For correspondence
    sankar@ccmb.res.in
    Competing interests
    Rajan Sankaranarayanan, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4524-9953

Funding

Department of Science and Technology, Ministry of Science and Technology (DST-INSPIRE)

  • Santosh Kumar Kuncha

Science and Engineering Research Board (J. C. Bose Fellowship)

  • Rajan Sankaranarayanan

Department of Biotechnology , Ministry of Science and Technology (Centre of Excellence)

  • Rajan Sankaranarayanan

Council of Scientific and Industrial Research (Healthcare Theme project)

  • Rajan Sankaranarayanan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Alan G Hinnebusch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, United States

Version history

  1. Received: April 21, 2020
  2. Accepted: May 27, 2020
  3. Accepted Manuscript published: May 28, 2020 (version 1)
  4. Version of Record published: June 18, 2020 (version 2)

Copyright

© 2020, Kuncha et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,963
    views
  • 214
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Santosh Kumar Kuncha
  2. Vinitha Lakshmi Venkadasamy
  3. Gurumoorthy Amudhan
  4. Priyanka Dahate
  5. Sankara Rao Kola
  6. Sambhavi Pottabathini
  7. Shobha P Kruparani
  8. P Chandra Shekar
  9. Rajan Sankaranarayanan
(2020)
Genomic innovation of ATD alleviates mistranslation associated with multicellularity in Animalia
eLife 9:e58118.
https://doi.org/10.7554/eLife.58118

Share this article

https://doi.org/10.7554/eLife.58118

Further reading

    1. Biochemistry and Chemical Biology
    Boglarka Zambo, Evelina Edelweiss ... Gergo Gogl
    Research Article

    Truncation of the protein-protein interaction SH3 domain of the membrane remodeling Bridging Integrator 1 (BIN1, Amphiphysin 2) protein leads to centronuclear myopathy. Here, we assessed the impact of a set of naturally observed, previously uncharacterized BIN1 SH3 domain variants using conventional in vitro and cell-based assays monitoring the BIN1 interaction with dynamin 2 (DNM2) and identified potentially harmful ones that can be also tentatively connected to neuromuscular disorders. However, SH3 domains are typically promiscuous and it is expected that other, so far unknown partners of BIN1 exist besides DNM2, that also participate in the development of centronuclear myopathy. In order to shed light on these other relevant interaction partners and to get a holistic picture of the pathomechanism behind BIN1 SH3 domain variants, we used affinity interactomics. We identified hundreds of new BIN1 interaction partners proteome-wide, among which many appear to participate in cell division, suggesting a critical role of BIN1 in the regulation of mitosis. Finally, we show that the identified BIN1 mutations indeed cause proteome-wide affinity perturbation, signifying the importance of employing unbiased affinity interactomic approaches.

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ramona Weber, Chung-Te Chang
    Research Article

    Recent findings indicate that the translation elongation rate influences mRNA stability. One of the factors that has been implicated in this link between mRNA decay and translation speed is the yeast DEAD-box helicase Dhh1p. Here, we demonstrated that the human ortholog of Dhh1p, DDX6, triggers the deadenylation-dependent decay of inefficiently translated mRNAs in human cells. DDX6 interacts with the ribosome through the Phe-Asp-Phe (FDF) motif in its RecA2 domain. Furthermore, RecA2-mediated interactions and ATPase activity are both required for DDX6 to destabilize inefficiently translated mRNAs. Using ribosome profiling and RNA sequencing, we identified two classes of endogenous mRNAs that are regulated in a DDX6-dependent manner. The identified targets are either translationally regulated or regulated at the steady-state-level and either exhibit signatures of poor overall translation or of locally reduced ribosome translocation rates. Transferring the identified sequence stretches into a reporter mRNA caused translation- and DDX6-dependent degradation of the reporter mRNA. In summary, these results identify DDX6 as a crucial regulator of mRNA translation and decay triggered by slow ribosome movement and provide insights into the mechanism by which DDX6 destabilizes inefficiently translated mRNAs.