Early life stress causes sex-specific changes in adult fronto-limbic connectivity that differentially drive learning

  1. Jordon D White
  2. Tanzil M Arefin
  3. Alexa Pugliese
  4. Choong H Lee
  5. Jeff Gassen
  6. Jiangyang Zhang
  7. Arie Kaffman  Is a corresponding author
  1. Yale University, United States
  2. New York University School of Medicine, United States
  3. Texas Christian University, United States
  4. Yale University School of Medicine, United States

Abstract

It is currently unclear whether early life stress (ELS) affects males and females differently. However, a growing body of work has shown that sex moderates responses to stress and injury, with important insights into sex-specific mechanisms provided by work in rodents. Unfortunately, most of the ELS studies in rodents were conducted only in males, a bias that is particularly notable in translational work that has used human imaging. Here we examine the effects of unpredictable postnatal stress (UPS), a mouse model of complex ELS, using high resolution diffusion magnetic resonance imaging. We show that UPS induces several neuroanatomical alterations that were seen in both sexes and resemble those reported in humans. In contrast, exposure to UPS induced fronto-limbic hyper-connectivity in males, but either no change or hypoconnectivity in females. Moderated-mediation analysis found that these sex-specific changes are likely to alter contextual freezing behavior in males but not in females.

Data availability

All imaging data were despited at https://doi.org/10.35092/yhjc.12367658

Article and author information

Author details

  1. Jordon D White

    Psychiatry, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Tanzil M Arefin

    Radiology, New York University School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Alexa Pugliese

    Psychiatry, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Choong H Lee

    Radiology, New York University School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jeff Gassen

    Psychology, Texas Christian University, Fort Worth, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jiangyang Zhang

    Radiology, New York University School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Arie Kaffman

    Psychiatry, Yale University School of Medicine, New Haven, United States
    For correspondence
    arie.kaffman@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7028-8869

Funding

National Institute of Mental Health (R01MH119164)

  • Jiangyang Zhang
  • Arie Kaffman

National Institute of Mental Health (R01MH118332)

  • Jiangyang Zhang
  • Arie Kaffman

National Center for Advancing Translational Sciences (TL1 TR001864)

  • Jordon D White

National Institute of Neurological Disorders and Stroke (R01NS102904)

  • Jiangyang Zhang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All studies were approved by the Institutional Animal Care and Use Committee (IACUC) at Yale University, protocol #2020-10981, and were conducted in accordance with the recommendations of the NIH Guide for the Care and the Use of Laboratory Animals.

Copyright

© 2020, White et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,917
    views
  • 291
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jordon D White
  2. Tanzil M Arefin
  3. Alexa Pugliese
  4. Choong H Lee
  5. Jeff Gassen
  6. Jiangyang Zhang
  7. Arie Kaffman
(2020)
Early life stress causes sex-specific changes in adult fronto-limbic connectivity that differentially drive learning
eLife 9:e58301.
https://doi.org/10.7554/eLife.58301

Share this article

https://doi.org/10.7554/eLife.58301

Further reading

    1. Neuroscience
    Timo van Kerkoerle, Louise Pape ... Ghislaine Dehaene-Lambertz
    Research Article

    The emergence of symbolic thinking has been proposed as a dominant cognitive criterion to distinguish humans from other primates during hominisation. Although the proper definition of a symbol has been the subject of much debate, one of its simplest features is bidirectional attachment: the content is accessible from the symbol, and vice versa. Behavioural observations scattered over the past four decades suggest that this criterion might not be met in non-human primates, as they fail to generalise an association learned in one temporal order (A to B) to the reverse order (B to A). Here, we designed an implicit fMRI test to investigate the neural mechanisms of arbitrary audio–visual and visual–visual pairing in monkeys and humans and probe their spontaneous reversibility. After learning a unidirectional association, humans showed surprise signals when this learned association was violated. Crucially, this effect occurred spontaneously in both learned and reversed directions, within an extended network of high-level brain areas, including, but also going beyond, the language network. In monkeys, by contrast, violations of association effects occurred solely in the learned direction and were largely confined to sensory areas. We propose that a human-specific brain network may have evolved the capacity for reversible symbolic reference.

    1. Neuroscience
    Moritz F Wurm, Doruk Yiğit Erigüç
    Research Article

    Recognizing goal-directed actions is a computationally challenging task, requiring not only the visual analysis of body movements, but also analysis of how these movements causally impact, and thereby induce a change in, those objects targeted by an action. We tested the hypothesis that the analysis of body movements and the effects they induce relies on distinct neural representations in superior and anterior inferior parietal lobe (SPL and aIPL). In four fMRI sessions, participants observed videos of actions (e.g. breaking stick, squashing plastic bottle) along with corresponding point-light-display (PLD) stick figures, pantomimes, and abstract animations of agent–object interactions (e.g. dividing or compressing a circle). Cross-decoding between actions and animations revealed that aIPL encodes abstract representations of action effect structures independent of motion and object identity. By contrast, cross-decoding between actions and PLDs revealed that SPL is disproportionally tuned to body movements independent of visible interactions with objects. Lateral occipitotemporal cortex (LOTC) was sensitive to both action effects and body movements. These results demonstrate that parietal cortex and LOTC are tuned to physical action features, such as how body parts move in space relative to each other and how body parts interact with objects to induce a change (e.g. in position or shape/configuration). The high level of abstraction revealed by cross-decoding suggests a general neural code supporting mechanical reasoning about how entities interact with, and have effects on, each other.