Early life stress causes sex-specific changes in adult fronto-limbic connectivity that differentially drive learning

  1. Jordon D White
  2. Tanzil M Arefin
  3. Alexa Pugliese
  4. Choong H Lee
  5. Jeff Gassen
  6. Jiangyang Zhang
  7. Arie Kaffman  Is a corresponding author
  1. Yale University, United States
  2. New York University School of Medicine, United States
  3. Texas Christian University, United States
  4. Yale University School of Medicine, United States

Abstract

It is currently unclear whether early life stress (ELS) affects males and females differently. However, a growing body of work has shown that sex moderates responses to stress and injury, with important insights into sex-specific mechanisms provided by work in rodents. Unfortunately, most of the ELS studies in rodents were conducted only in males, a bias that is particularly notable in translational work that has used human imaging. Here we examine the effects of unpredictable postnatal stress (UPS), a mouse model of complex ELS, using high resolution diffusion magnetic resonance imaging. We show that UPS induces several neuroanatomical alterations that were seen in both sexes and resemble those reported in humans. In contrast, exposure to UPS induced fronto-limbic hyper-connectivity in males, but either no change or hypoconnectivity in females. Moderated-mediation analysis found that these sex-specific changes are likely to alter contextual freezing behavior in males but not in females.

Data availability

All imaging data were despited at https://doi.org/10.35092/yhjc.12367658

Article and author information

Author details

  1. Jordon D White

    Psychiatry, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Tanzil M Arefin

    Radiology, New York University School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Alexa Pugliese

    Psychiatry, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Choong H Lee

    Radiology, New York University School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jeff Gassen

    Psychology, Texas Christian University, Fort Worth, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jiangyang Zhang

    Radiology, New York University School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Arie Kaffman

    Psychiatry, Yale University School of Medicine, New Haven, United States
    For correspondence
    arie.kaffman@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7028-8869

Funding

National Institute of Mental Health (R01MH119164)

  • Jiangyang Zhang
  • Arie Kaffman

National Institute of Mental Health (R01MH118332)

  • Jiangyang Zhang
  • Arie Kaffman

National Center for Advancing Translational Sciences (TL1 TR001864)

  • Jordon D White

National Institute of Neurological Disorders and Stroke (R01NS102904)

  • Jiangyang Zhang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All studies were approved by the Institutional Animal Care and Use Committee (IACUC) at Yale University, protocol #2020-10981, and were conducted in accordance with the recommendations of the NIH Guide for the Care and the Use of Laboratory Animals.

Copyright

© 2020, White et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,896
    views
  • 290
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jordon D White
  2. Tanzil M Arefin
  3. Alexa Pugliese
  4. Choong H Lee
  5. Jeff Gassen
  6. Jiangyang Zhang
  7. Arie Kaffman
(2020)
Early life stress causes sex-specific changes in adult fronto-limbic connectivity that differentially drive learning
eLife 9:e58301.
https://doi.org/10.7554/eLife.58301

Share this article

https://doi.org/10.7554/eLife.58301

Further reading

    1. Neuroscience
    Mina Mišić, Noah Lee ... Herta Flor
    Research Article

    Chronic back pain (CBP) is a global health concern with significant societal and economic burden. While various predictors of back pain chronicity have been proposed, including demographic and psychosocial factors, neuroimaging studies have pointed to brain characteristics as predictors of CBP. However, large-scale, multisite validation of these predictors is currently lacking. In two independent longitudinal studies, we examined white matter diffusion imaging data and pain characteristics in patients with subacute back pain (SBP) over 6- and 12-month periods. Diffusion data from individuals with CBP and healthy controls (HC) were analyzed for comparison. Whole-brain tract-based spatial statistics analyses revealed that a cluster in the right superior longitudinal fasciculus (SLF) tract had larger fractional anisotropy (FA) values in patients who recovered (SBPr) compared to those with persistent pain (SBPp), and predicted changes in pain severity. The SLF FA values accurately classified patients at baseline and follow-up in a third publicly available dataset (Area under the Receiver Operating Curve ~0.70). Notably, patients who recovered had FA values larger than those of HC suggesting a potential role of SLF integrity in resilience to CBP. Structural connectivity-based models also classified SBPp and SBPr patients from the three data sets (validation accuracy 67%). Our results validate the right SLF as a robust predictor of CBP development, with potential for clinical translation. Cognitive and behavioral processes dependent on the right SLF, such as proprioception and visuospatial attention, should be analyzed in subacute stages as they could prove important for back pain chronicity.

    1. Neuroscience
    Lina María Jaime Tobón, Tobias Moser
    Research Article

    Neural diversity can expand the encoding capacity of a circuitry. A striking example of diverse structure and function is presented by the afferent synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) in the cochlea. Presynaptic active zones at the pillar IHC side activate at lower IHC potentials than those of the modiolar side that have more presynaptic Ca2+ channels. The postsynaptic SGNs differ in their spontaneous firing rates, sound thresholds, and operating ranges. While a causal relationship between synaptic heterogeneity and neural response diversity seems likely, experimental evidence linking synaptic and SGN physiology has remained difficult to obtain. Here, we aimed at bridging this gap by ex vivo paired recordings of murine IHCs and postsynaptic SGN boutons with stimuli and conditions aimed to mimic those of in vivo SGN characterization. Synapses with high spontaneous rate of release (SR) were found predominantly on the pillar side of the IHC. These high SR synapses had larger and more temporally compact spontaneous EPSCs, lower voltage thresholds, tighter coupling of Ca2+ channels and vesicular release sites, shorter response latencies, and higher initial release rates. This study indicates that synaptic heterogeneity in IHCs directly contributes to the diversity of spontaneous and sound-evoked firing of SGNs.