Synaptotagmin-1 is the Ca2+ sensor for fast striatal dopamine release

Abstract

Dopamine powerfully controls neural circuits through neuromodulation. In the vertebrate striatum, dopamine adjusts cellular functions to regulate behaviors across broad time scales, but how the dopamine secretory system is built to support fast and slow neuromodulation is not known. Here, we set out to identify Ca2+-triggering mechanisms for dopamine release. We find that synchronous dopamine secretion is abolished in acute brain slices of conditional knockout mice in which Synaptotagmin-1 is removed from dopamine neurons. This indicates that Synaptotagmin-1 is the Ca2+ sensor for fast dopamine release. Remarkably, dopamine release induced by strong depolarization and asynchronous release during stimulus trains are unaffected by Synaptotagmin-1 knockout. Microdialysis further reveals that these modes and action potential-independent release provide significant amounts of extracellular dopamine in vivo. We propose that the molecular machinery for dopamine secretion has evolved to support fast and slow signaling modes, with fast release requiring the Ca2+ sensor Synaptotagmin-1.

Data availability

All data generated in the study are included in the figures, including individual data points.

Article and author information

Author details

  1. Aditi Banerjee

    Neurobiology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jinoh Lee

    Department of Neurobiology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Paulina Nemcova

    Department of Neurobiology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0323-8079
  4. Changliang Liu

    Department of Neurobiology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Pascal S Kaeser

    Department of Neurobiology, Harvard Medical School, Boston, United States
    For correspondence
    kaeser@hms.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1558-1958

Funding

National Institute of Neurological Disorders and Stroke (R01NS103484)

  • Pascal S Kaeser

Harvard Medical School (Dean's Initiative Award)

  • Pascal S Kaeser

Harvard University (Harvard-MIT Joint research grant)

  • Pascal S Kaeser

Harvard Medical School (Hearst Fellowship)

  • Aditi Banerjee

Harvard Medical School (Brooks Fellowship)

  • Aditi Banerjee

Harvard Medical School (Gordon Fellowship)

  • Changliang Liu

Marshallplan-Jubiläumsstiftung (Exchange Scholarship)

  • Paulina Nemcova

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were performed according to institutional guidelines of Harvard University, and were in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The animals were handled according to protocols (protocol number IS00000049) approved by the institutional animal care and use committee (IACUC).

Reviewing Editor

  1. Lu Chen, Stanford University, United States

Version history

  1. Received: April 28, 2020
  2. Accepted: June 2, 2020
  3. Accepted Manuscript published: June 3, 2020 (version 1)
  4. Version of Record published: June 26, 2020 (version 2)

Copyright

© 2020, Banerjee et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,375
    Page views
  • 470
    Downloads
  • 25
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Aditi Banerjee
  2. Jinoh Lee
  3. Paulina Nemcova
  4. Changliang Liu
  5. Pascal S Kaeser
(2020)
Synaptotagmin-1 is the Ca2+ sensor for fast striatal dopamine release
eLife 9:e58359.
https://doi.org/10.7554/eLife.58359

Further reading

    1. Cell Biology
    2. Microbiology and Infectious Disease
    Takehiro Kado, Zarina Akbary ... M Sloan Siegrist
    Research Article Updated

    Lateral partitioning of proteins and lipids shapes membrane function. In model membranes, partitioning can be influenced both by bilayer-intrinsic factors like molecular composition and by bilayer-extrinsic factors such as interactions with other membranes and solid supports. While cellular membranes can departition in response to bilayer-intrinsic or -extrinsic disruptions, the mechanisms by which they partition de novo are largely unknown. The plasma membrane of Mycobacterium smegmatis spatially and biochemically departitions in response to the fluidizing agent benzyl alcohol, then repartitions upon fluidizer washout. By screening for mutants that are sensitive to benzyl alcohol, we show that the bifunctional cell wall synthase PonA2 promotes membrane partitioning and cell growth during recovery from benzyl alcohol exposure. PonA2’s role in membrane repartitioning and regrowth depends solely on its conserved transglycosylase domain. Active cell wall polymerization promotes de novo membrane partitioning and the completed cell wall polymer helps to maintain membrane partitioning. Our work highlights the complexity of membrane–cell wall interactions and establishes a facile model system for departitioning and repartitioning cellular membranes.

    1. Cell Biology
    2. Computational and Systems Biology
    Breanne Sparta, Nont Kosaisawe ... John G Albeck
    Research Article Updated

    mTORC1 senses nutrients and growth factors and phosphorylates downstream targets, including the transcription factor TFEB, to coordinate metabolic supply and demand. These functions position mTORC1 as a central controller of cellular homeostasis, but the behavior of this system in individual cells has not been well characterized. Here, we provide measurements necessary to refine quantitative models for mTORC1 as a metabolic controller. We developed a series of fluorescent protein-TFEB fusions and a multiplexed immunofluorescence approach to investigate how combinations of stimuli jointly regulate mTORC1 signaling at the single-cell level. Live imaging of individual MCF10A cells confirmed that mTORC1-TFEB signaling responds continuously to individual, sequential, or simultaneous treatment with amino acids and the growth factor insulin. Under physiologically relevant concentrations of amino acids, we observe correlated fluctuations in TFEB, AMPK, and AKT signaling that indicate continuous activity adjustments to nutrient availability. Using partial least squares regression modeling, we show that these continuous gradations are connected to protein synthesis rate via a distributed network of mTORC1 effectors, providing quantitative support for the qualitative model of mTORC1 as a homeostatic controller and clarifying its functional behavior within individual cells.