Repeated outbreaks drive the evolution of bacteriophage communication

  1. Hilje M Doekes  Is a corresponding author
  2. Glenn A Mulder
  3. Rutger Hermsen
  1. Wageningen University, Netherlands
  2. Utrecht University, Netherlands

Abstract

Recently, a small-molecule communication mechanism was discovered in a range of Bacillus-infecting bacteriophages, which these temperate phages use to inform their lysis-lysogeny decision. We present a mathematical model of the ecological and evolutionary dynamics of such viral communication, and show that a communication strategy in which phages use the lytic cycle early in an outbreak (when susceptible host cells are abundant) but switch to the lysogenic cycle later (when susceptible cells become scarce) is favoured over a bet-hedging strategy in which cells are lysogenised with constant probability. However, such phage communication can evolve only if phage-bacteria populations are regularly perturbed away from their equilibrium state, so that acute outbreaks of phage infections in pools of susceptible cells continue to occur. Our model then predicts the selection of phages that switch infection strategy when half of the available susceptible cells have been infected.

Data availability

All data were obtained through computer simulation. Scripts to run these simulations, simulated data, and analysis scripts are available at GitHub: https://github.com/hiljedoekes/PhageCom.

Article and author information

Author details

  1. Hilje M Doekes

    Laboratory of Genetics, Wageningen University, Wageningen, Netherlands
    For correspondence
    hiljedoekes@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6360-5176
  2. Glenn A Mulder

    Biology, Utrecht University, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Rutger Hermsen

    Science faculty, Biology Department, Utrecht University, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4633-4877

Funding

Human Frontier Science Program (RGY0072/2015)

  • Hilje M Doekes
  • Rutger Hermsen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Doekes et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,674
    views
  • 306
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hilje M Doekes
  2. Glenn A Mulder
  3. Rutger Hermsen
(2021)
Repeated outbreaks drive the evolution of bacteriophage communication
eLife 10:e58410.
https://doi.org/10.7554/eLife.58410

Share this article

https://doi.org/10.7554/eLife.58410