Phagocytic glia are obligatory intermediates in transmission of mutant huntingtin aggregates across neuronal synapses

  1. Kirby M Donnelly
  2. Olivia R DeLorenzo
  3. Aprem DA Zaya
  4. Gabrielle E Pisano
  5. Wint M Thu
  6. Liqun Luo
  7. Ron R Kopito
  8. Margaret M Panning Pearce  Is a corresponding author
  1. University of the Sciences, United States
  2. Howard Hughes Medical Institute, Stanford University, United States
  3. Stanford University, United States

Abstract

Emerging evidence supports the hypothesis that pathogenic protein aggregates associated with neurodegenerative diseases spread from cell to cell through the brain in a manner akin to infectious prions. Here, we show that mutant huntingtin (mHtt) aggregates associated with Huntington disease transfer anterogradely from presynaptic to postsynaptic neurons in the adult Drosophila olfactory system. Trans-synaptic transmission of mHtt aggregates is inversely correlated with neuronal activity and blocked by inhibiting caspases in presynaptic neurons, implicating synaptic dysfunction and cell death in aggregate spreading. Remarkably, mHtt aggregate transmission across synapses requires the glial scavenger receptor Draper and involves a transient visit to the glial cytoplasm, indicating that phagocytic glia act as obligatory intermediates in aggregate spreading between synaptically-connected neurons. These findings expand our understanding of phagocytic glia as double-edged players in neurodegeneration—by clearing neurotoxic protein aggregates, but also providing an opportunity for prion-like seeds to evade phagolysosomal degradation and propagate further in the brain.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Kirby M Donnelly

    Department of Biological Sciences, University of the Sciences, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Olivia R DeLorenzo

    Program in Neuroscience, University of the Sciences, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Aprem DA Zaya

    Department of Biological Sciences, University of the Sciences, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Gabrielle E Pisano

    Department of Biological Sciences, University of the Sciences, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Wint M Thu

    Department of Biological Sciences, University of the Sciences, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Liqun Luo

    Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5467-9264
  7. Ron R Kopito

    Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Margaret M Panning Pearce

    Department of Biological Sciences, Program in Neuroscience, University of the Sciences, Philadelphia, United States
    For correspondence
    m.pearce@usciences.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5846-9632

Funding

Pittsburgh Foundation (Integrated Research & Education Grant,UN2018-98318)

  • Margaret M Panning Pearce

W.W. Smith Charitable Trusts (Research Grant)

  • Margaret M Panning Pearce

National Institutes of Health (R03-AG063295)

  • Margaret M Panning Pearce

National Institutes of Health (R01-DC005982)

  • Liqun Luo

National Institutes of Health (R01-NS042842)

  • Ron R Kopito

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Donnelly et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,779
    views
  • 419
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kirby M Donnelly
  2. Olivia R DeLorenzo
  3. Aprem DA Zaya
  4. Gabrielle E Pisano
  5. Wint M Thu
  6. Liqun Luo
  7. Ron R Kopito
  8. Margaret M Panning Pearce
(2020)
Phagocytic glia are obligatory intermediates in transmission of mutant huntingtin aggregates across neuronal synapses
eLife 9:e58499.
https://doi.org/10.7554/eLife.58499

Share this article

https://doi.org/10.7554/eLife.58499

Further reading

    1. Cell Biology
    Jingjing Li, Xinyue Wang ... Vincent Archambault
    Research Article

    In animals, mitosis involves the breakdown of the nucleus. The reassembly of a nucleus after mitosis requires the reformation of the nuclear envelope around a single mass of chromosomes. This process requires Ankle2 (also known as LEM4 in humans) which interacts with PP2A and promotes the function of the Barrier-to-Autointegration Factor (BAF). Upon dephosphorylation, BAF dimers cross-bridge chromosomes and bind lamins and transmembrane proteins of the reassembling nuclear envelope. How Ankle2 functions in mitosis is incompletely understood. Using a combination of approaches in Drosophila, along with structural modeling, we provide several lines of evidence that suggest that Ankle2 is a regulatory subunit of PP2A, explaining how it promotes BAF dephosphorylation. In addition, we discovered that Ankle2 interacts with the endoplasmic reticulum protein Vap33, which is required for Ankle2 localization at the reassembling nuclear envelope during telophase. We identified the interaction sites of PP2A and Vap33 on Ankle2. Through genetic rescue experiments, we show that the Ankle2/PP2A interaction is essential for the function of Ankle2 in nuclear reassembly and that the Ankle2/Vap33 interaction also promotes this process. Our study sheds light on the molecular mechanisms of post-mitotic nuclear reassembly and suggests that the endoplasmic reticulum is not merely a source of membranes in the process, but also provides localized enzymatic activity.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bhumil Patel, Maryke Grobler ... Needhi Bhalla
    Research Article

    Meiotic crossover recombination is essential for both accurate chromosome segregation and the generation of new haplotypes for natural selection to act upon. This requirement is known as crossover assurance and is one example of crossover control. While the conserved role of the ATPase, PCH-2, during meiotic prophase has been enigmatic, a universal phenotype when pch-2 or its orthologs are mutated is a change in the number and distribution of meiotic crossovers. Here, we show that PCH-2 controls the number and distribution of crossovers by antagonizing their formation. This antagonism produces different effects at different stages of meiotic prophase: early in meiotic prophase, PCH-2 prevents double-strand breaks from becoming crossover-eligible intermediates, limiting crossover formation at sites of initial double-strand break formation and homolog interactions. Later in meiotic prophase, PCH-2 winnows the number of crossover-eligible intermediates, contributing to the designation of crossovers and ultimately, crossover assurance. We also demonstrate that PCH-2 accomplishes this regulation through the meiotic HORMAD, HIM-3. Our data strongly support a model in which PCH-2’s conserved role is to remodel meiotic HORMADs throughout meiotic prophase to destabilize crossover-eligible precursors and coordinate meiotic recombination with synapsis, ensuring the progressive implementation of meiotic recombination and explaining its function in the pachytene checkpoint and crossover control.