Phagocytic glia are obligatory intermediates in transmission of mutant huntingtin aggregates across neuronal synapses

  1. Kirby M Donnelly
  2. Olivia R DeLorenzo
  3. Aprem DA Zaya
  4. Gabrielle E Pisano
  5. Wint M Thu
  6. Liqun Luo
  7. Ron R Kopito
  8. Margaret M Panning Pearce  Is a corresponding author
  1. University of the Sciences, United States
  2. Howard Hughes Medical Institute, Stanford University, United States
  3. Stanford University, United States

Abstract

Emerging evidence supports the hypothesis that pathogenic protein aggregates associated with neurodegenerative diseases spread from cell to cell through the brain in a manner akin to infectious prions. Here, we show that mutant huntingtin (mHtt) aggregates associated with Huntington disease transfer anterogradely from presynaptic to postsynaptic neurons in the adult Drosophila olfactory system. Trans-synaptic transmission of mHtt aggregates is inversely correlated with neuronal activity and blocked by inhibiting caspases in presynaptic neurons, implicating synaptic dysfunction and cell death in aggregate spreading. Remarkably, mHtt aggregate transmission across synapses requires the glial scavenger receptor Draper and involves a transient visit to the glial cytoplasm, indicating that phagocytic glia act as obligatory intermediates in aggregate spreading between synaptically-connected neurons. These findings expand our understanding of phagocytic glia as double-edged players in neurodegeneration—by clearing neurotoxic protein aggregates, but also providing an opportunity for prion-like seeds to evade phagolysosomal degradation and propagate further in the brain.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Kirby M Donnelly

    Department of Biological Sciences, University of the Sciences, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Olivia R DeLorenzo

    Program in Neuroscience, University of the Sciences, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Aprem DA Zaya

    Department of Biological Sciences, University of the Sciences, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Gabrielle E Pisano

    Department of Biological Sciences, University of the Sciences, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Wint M Thu

    Department of Biological Sciences, University of the Sciences, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Liqun Luo

    Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5467-9264
  7. Ron R Kopito

    Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Margaret M Panning Pearce

    Department of Biological Sciences, Program in Neuroscience, University of the Sciences, Philadelphia, United States
    For correspondence
    m.pearce@usciences.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5846-9632

Funding

Pittsburgh Foundation (Integrated Research & Education Grant,UN2018-98318)

  • Margaret M Panning Pearce

W.W. Smith Charitable Trusts (Research Grant)

  • Margaret M Panning Pearce

National Institutes of Health (R03-AG063295)

  • Margaret M Panning Pearce

National Institutes of Health (R01-DC005982)

  • Liqun Luo

National Institutes of Health (R01-NS042842)

  • Ron R Kopito

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Hugo J Bellen, Baylor College of Medicine, United States

Version history

  1. Received: May 2, 2020
  2. Accepted: May 22, 2020
  3. Accepted Manuscript published: May 28, 2020 (version 1)
  4. Version of Record published: June 16, 2020 (version 2)

Copyright

© 2020, Donnelly et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,615
    Page views
  • 397
    Downloads
  • 16
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kirby M Donnelly
  2. Olivia R DeLorenzo
  3. Aprem DA Zaya
  4. Gabrielle E Pisano
  5. Wint M Thu
  6. Liqun Luo
  7. Ron R Kopito
  8. Margaret M Panning Pearce
(2020)
Phagocytic glia are obligatory intermediates in transmission of mutant huntingtin aggregates across neuronal synapses
eLife 9:e58499.
https://doi.org/10.7554/eLife.58499

Share this article

https://doi.org/10.7554/eLife.58499

Further reading

    1. Cell Biology
    Kazuki Hanaoka, Kensuke Nishikawa ... Kouichi Funato
    Research Article

    Membrane contact sites (MCSs) are junctures that perform important roles including coordinating lipid metabolism. Previous studies have indicated that vacuolar fission/fusion processes are coupled with modifications in the membrane lipid composition. However, it has been still unclear whether MCS-mediated lipid metabolism controls the vacuolar morphology. Here, we report that deletion of tricalbins (Tcb1, Tcb2, and Tcb3), tethering proteins at endoplasmic reticulum (ER)–plasma membrane (PM) and ER–Golgi contact sites, alters fusion/fission dynamics and causes vacuolar fragmentation in the yeast Saccharomyces cerevisiae. In addition, we show that the sphingolipid precursor phytosphingosine (PHS) accumulates in tricalbin-deleted cells, triggering the vacuolar division. Detachment of the nucleus–vacuole junction (NVJ), an important contact site between the vacuole and the perinuclear ER, restored vacuolar morphology in both cells subjected to high exogenous PHS and Tcb3-deleted cells, supporting that PHS transport across the NVJ induces vacuole division. Thus, our results suggest that vacuolar morphology is maintained by MCSs through the metabolism of sphingolipids.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Monica Salinas-Pena, Elena Rebollo, Albert Jordan
    Research Article

    Histone H1 participates in chromatin condensation and regulates nuclear processes. Human somatic cells may contain up to seven histone H1 variants, although their functional heterogeneity is not fully understood. Here, we have profiled the differential nuclear distribution of the somatic H1 repertoire in human cells through imaging techniques including super-resolution microscopy. H1 variants exhibit characteristic distribution patterns in both interphase and mitosis. H1.2, H1.3, and H1.5 are universally enriched at the nuclear periphery in all cell lines analyzed and co-localize with compacted DNA. H1.0 shows a less pronounced peripheral localization, with apparent variability among different cell lines. On the other hand, H1.4 and H1X are distributed throughout the nucleus, being H1X universally enriched in high-GC regions and abundant in the nucleoli. Interestingly, H1.4 and H1.0 show a more peripheral distribution in cell lines lacking H1.3 and H1.5. The differential distribution patterns of H1 suggest specific functionalities in organizing lamina-associated domains or nucleolar activity, which is further supported by a distinct response of H1X or phosphorylated H1.4 to the inhibition of ribosomal DNA transcription. Moreover, H1 variants depletion affects chromatin structure in a variant-specific manner. Concretely, H1.2 knock-down, either alone or combined, triggers a global chromatin decompaction. Overall, imaging has allowed us to distinguish H1 variants distribution beyond the segregation in two groups denoted by previous ChIP-Seq determinations. Our results support H1 variants heterogeneity and suggest that variant-specific functionality can be shared between different cell types.