Phagocytic glia are obligatory intermediates in transmission of mutant huntingtin aggregates across neuronal synapses

  1. Kirby M Donnelly
  2. Olivia R DeLorenzo
  3. Aprem DA Zaya
  4. Gabrielle E Pisano
  5. Wint M Thu
  6. Liqun Luo
  7. Ron R Kopito
  8. Margaret M Panning Pearce  Is a corresponding author
  1. University of the Sciences, United States
  2. Howard Hughes Medical Institute, Stanford University, United States
  3. Stanford University, United States

Abstract

Emerging evidence supports the hypothesis that pathogenic protein aggregates associated with neurodegenerative diseases spread from cell to cell through the brain in a manner akin to infectious prions. Here, we show that mutant huntingtin (mHtt) aggregates associated with Huntington disease transfer anterogradely from presynaptic to postsynaptic neurons in the adult Drosophila olfactory system. Trans-synaptic transmission of mHtt aggregates is inversely correlated with neuronal activity and blocked by inhibiting caspases in presynaptic neurons, implicating synaptic dysfunction and cell death in aggregate spreading. Remarkably, mHtt aggregate transmission across synapses requires the glial scavenger receptor Draper and involves a transient visit to the glial cytoplasm, indicating that phagocytic glia act as obligatory intermediates in aggregate spreading between synaptically-connected neurons. These findings expand our understanding of phagocytic glia as double-edged players in neurodegeneration—by clearing neurotoxic protein aggregates, but also providing an opportunity for prion-like seeds to evade phagolysosomal degradation and propagate further in the brain.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Kirby M Donnelly

    Department of Biological Sciences, University of the Sciences, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Olivia R DeLorenzo

    Program in Neuroscience, University of the Sciences, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Aprem DA Zaya

    Department of Biological Sciences, University of the Sciences, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Gabrielle E Pisano

    Department of Biological Sciences, University of the Sciences, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Wint M Thu

    Department of Biological Sciences, University of the Sciences, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Liqun Luo

    Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5467-9264
  7. Ron R Kopito

    Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Margaret M Panning Pearce

    Department of Biological Sciences, Program in Neuroscience, University of the Sciences, Philadelphia, United States
    For correspondence
    m.pearce@usciences.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5846-9632

Funding

Pittsburgh Foundation (Integrated Research & Education Grant,UN2018-98318)

  • Margaret M Panning Pearce

W.W. Smith Charitable Trusts (Research Grant)

  • Margaret M Panning Pearce

National Institutes of Health (R03-AG063295)

  • Margaret M Panning Pearce

National Institutes of Health (R01-DC005982)

  • Liqun Luo

National Institutes of Health (R01-NS042842)

  • Ron R Kopito

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Donnelly et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,768
    views
  • 418
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kirby M Donnelly
  2. Olivia R DeLorenzo
  3. Aprem DA Zaya
  4. Gabrielle E Pisano
  5. Wint M Thu
  6. Liqun Luo
  7. Ron R Kopito
  8. Margaret M Panning Pearce
(2020)
Phagocytic glia are obligatory intermediates in transmission of mutant huntingtin aggregates across neuronal synapses
eLife 9:e58499.
https://doi.org/10.7554/eLife.58499

Share this article

https://doi.org/10.7554/eLife.58499

Further reading

    1. Cell Biology
    Joan Chang, Adam Pickard ... Karl E Kadler
    Research Article

    Collagen-I fibrillogenesis is crucial to health and development, where dysregulation is a hallmark of fibroproliferative diseases. Here, we show that collagen-I fibril assembly required a functional endocytic system that recycles collagen-I to assemble new fibrils. Endogenous collagen production was not required for fibrillogenesis if exogenous collagen was available, but the circadian-regulated vacuolar protein sorting (VPS) 33b and collagen-binding integrin α11 subunit were crucial to fibrillogenesis. Cells lacking VPS33B secrete soluble collagen-I protomers but were deficient in fibril formation, thus secretion and assembly are separately controlled. Overexpression of VPS33B led to loss of fibril rhythmicity and overabundance of fibrils, which was mediated through integrin α11β1. Endocytic recycling of collagen-I was enhanced in human fibroblasts isolated from idiopathic pulmonary fibrosis, where VPS33B and integrin α11 subunit were overexpressed at the fibrogenic front; this correlation between VPS33B, integrin α11 subunit, and abnormal collagen deposition was also observed in samples from patients with chronic skin wounds. In conclusion, our study showed that circadian-regulated endocytic recycling is central to homeostatic assembly of collagen fibrils and is disrupted in diseases.

    1. Cell Biology
    Chun-Wei Chen, Jeffery B Chavez ... Bruce J Nicholson
    Research Article Updated

    Endometriosis is a debilitating disease affecting 190 million women worldwide and the greatest single contributor to infertility. The most broadly accepted etiology is that uterine endometrial cells retrogradely enter the peritoneum during menses, and implant and form invasive lesions in a process analogous to cancer metastasis. However, over 90% of women suffer retrograde menstruation, but only 10% develop endometriosis, and debate continues as to whether the underlying defect is endometrial or peritoneal. Processes implicated in invasion include: enhanced motility; adhesion to, and formation of gap junctions with, the target tissue. Endometrial stromal (ESCs) from 22 endometriosis patients at different disease stages show much greater invasiveness across mesothelial (or endothelial) monolayers than ESCs from 22 control subjects, which is further enhanced by the presence of EECs. This is due to the enhanced responsiveness of endometriosis ESCs to the mesothelium, which induces migration and gap junction coupling. ESC-PMC gap junction coupling is shown to be required for invasion, while coupling between PMCs enhances mesothelial barrier breakdown.