Synaptic and intrinsic mechanisms underlying development of cortical direction selectivity

Abstract

Modifications of synaptic inputs and cell-intrinsic properties both contribute to neuronal plasticity and development. To better understand these mechanisms, we undertook an intracellular analysis of the development of direction selectivity in the ferret visual cortex, which occurs rapidly over a few days after eye opening. We found strong evidence of developmental changes in linear spatiotemporal receptive fields of simple cells, implying alterations in circuit inputs. Further, this receptive field plasticity was accompanied by increases in near-spike-threshold excitability and input-output gain that resulted in dramatically increased spiking responses in the experienced state. Increases in subthreshold membrane responses induced by the receptive field plasticity and the increased input-output spiking gain were both necessary to explain the elevated firing rates in experienced ferrets. These results demonstrate that cortical direction selectivity develops through a combination of plasticity in inputs and in cell-intrinsic properties.

Data availability

Data is available at our website at http://data.vhlab.org. Code is available at http://code.vhlab.org (links to GitHub).

Article and author information

Author details

  1. Arani Roy

    Department of Biology, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jason J Osik

    Department of Biology, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Benyamin Meschede-Krasa

    Department of Biology, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Wesley T Alford

    Department of Biology, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Daniel P Leman

    Department of Biology, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Stephen D Van Hooser

    Department of Biology, Brandeis University, Waltham, United States
    For correspondence
    vanhoosr@brandeis.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1112-5832

Funding

National Eye Institute (EY022122)

  • Arani Roy
  • Jason J Osik
  • Benyamin Meschede-Krasa
  • Wesley T Alford
  • Daniel P Leman
  • Stephen D Van Hooser

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of Brandeis University (19010, 16003, 13011). All procedures were performed under isoflurane anesthesia and every effort was made to minimize suffering.

Copyright

© 2020, Roy et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,961
    views
  • 239
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Arani Roy
  2. Jason J Osik
  3. Benyamin Meschede-Krasa
  4. Wesley T Alford
  5. Daniel P Leman
  6. Stephen D Van Hooser
(2020)
Synaptic and intrinsic mechanisms underlying development of cortical direction selectivity
eLife 9:e58509.
https://doi.org/10.7554/eLife.58509

Share this article

https://doi.org/10.7554/eLife.58509

Further reading

    1. Developmental Biology
    Thomas A Bos, Elizaveta Polyakova ... Monique RM Jongbloed
    Research Article

    Human autonomic neuronal cell models are emerging as tools for modelling diseases such as cardiac arrhythmias. In this systematic review, we compared thirty-three articles applying fourteen different protocols to generate sympathetic neurons and three different procedures to produce parasympathetic neurons. All methods involved the differentiation of human pluripotent stem cells, and none employed permanent or reversible cell immortalization. Almost all protocols were reproduced in multiple pluripotent stem cell lines, and over half show evidence of neural firing capacity. Common limitations in the field are a lack of three-dimensional models and models including multiple cell types. Sympathetic neuron differentiation protocols largely mirrored embryonic development, with the notable absence of migration, axon extension, and target-specificity cues. Parasympathetic neuron differentiation protocols may be improved by including several embryonic cues promoting cell survival, cell maturation, or ion channel expression. Moreover, additional markers to define parasympathetic neurons in vitro may support the validity of these protocols. Nonetheless, four sympathetic neuron differentiation protocols and one parasympathetic neuron differentiation protocol reported more than two thirds of cells expressing autonomic neuron markers. Altogether, these protocols promise to open new research avenues of human autonomic neuron development and disease modelling.

    1. Developmental Biology
    2. Genetics and Genomics
    Svanhild Nornes, Susann Bruche ... Sarah De Val
    Research Article Updated

    The establishment and growth of the arterial endothelium require the coordinated expression of numerous genes. However, regulation of this process is not yet fully understood. Here, we combined in silico analysis with transgenic mice and zebrafish models to characterize arterial-specific enhancers associated with eight key arterial identity genes (Acvrl1/Alk1, Cxcr4, Cxcl12, Efnb2, Gja4/Cx37, Gja5/Cx40, Nrp1, and Unc5b). Next, to elucidate the regulatory pathways upstream of arterial gene transcription, we investigated the transcription factors binding each arterial enhancer compared to a similar assessment of non-arterial endothelial enhancers. These results found that binding of SOXF and ETS factors was a common occurrence at both arterial and pan-endothelial enhancers, suggesting neither are sufficient to direct arterial specificity. Conversely, FOX motifs independent of ETS motifs were over-represented at arterial enhancers. Further, MEF2 and RBPJ binding was enriched but not ubiquitous at arterial enhancers, potentially linked to specific patterns of behaviour within the arterial endothelium. Lastly, there was no shared or arterial-specific signature for WNT-associated TCF/LEF, TGFβ/BMP-associated SMAD1/5 and SMAD2/3, shear stress-associated KLF4, or venous-enriched NR2F2. This cohort of well-characterized and in vivo-verified enhancers can now provide a platform for future studies into the interaction of different transcriptional and signaling pathways with arterial gene expression.