Spatial inter-centromeric interactions facilitated the emergence of evolutionary new centromeres

  1. Krishnendu Guin
  2. Yao Chen
  3. Radha Mishra
  4. Siti Rawaidah B M Muzaki
  5. Bhagya C Thimmappa
  6. Caoimhe E O'Brien
  7. Geraldine Butler
  8. Amartya Sanyal  Is a corresponding author
  9. Kaustuv Sanyal  Is a corresponding author
  1. Jawaharlal Nehru Centre for Advanced Scientific Research, India
  2. Nanyang Technological University, Singapore
  3. University College Dublin, Ireland
  4. Conway Institute, University College Dublin, Ireland

Abstract

Centromeres of Candida albicans form on unique and different DNA sequences but a closely related species, Candida tropicalis, possesses homogenized inverted repeat (HIR)-associated centromeres. To investigate the mechanism of centromere type transition, we improved the fragmented genome assembly and constructed a chromosome-level genome assembly of C. tropicalis by employing PacBio sequencing, chromosome conformation capture sequencing (3C-seq), chromoblot, and genetic analysis of engineered aneuploid strains. Further, we analyzed the 3D genome organization using 3C-seq data, which revealed spatial proximity among the centromeres as well as telomeres of seven chromosomes in C. tropicalis. Intriguingly, we observed evidence of inter-centromeric translocations in the common ancestor of C. albicans and C. tropicalis. Identification of putative centromeres in closely related Candida sojae, Candida viswanathii and Candida parapsilosis indicates loss of ancestral HIR-associated centromeres and establishment of evolutionary new centromeres (ENCs) in C. albicans. We propose that spatial proximity of the homologous centromere DNA sequences facilitated karyotype rearrangements and centromere type transitions in human pathogenic yeasts of the CUG-Ser1 clade.

Data availability

All sequencing data reported in the study and the genome assembly of C. tropicalis and C. sojae have been submitted to NCBI under the BioProject accession numbers PRJNA596050 and PRJNA604451

The following data sets were generated

Article and author information

Author details

  1. Krishnendu Guin

    Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6957-465X
  2. Yao Chen

    Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  3. Radha Mishra

    Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  4. Siti Rawaidah B M Muzaki

    Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  5. Bhagya C Thimmappa

    Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  6. Caoimhe E O'Brien

    University College Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  7. Geraldine Butler

    Conway Institute, University College Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  8. Amartya Sanyal

    Nanyang Technological University, Singapore, Singapore
    For correspondence
    asanyal@ntu.edu.sg
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2109-4478
  9. Kaustuv Sanyal

    Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
    For correspondence
    sanyal@jncasr.ac.in
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6611-4073

Funding

Council of Scientific and Industrial Research (Shyama Prasad Mukherjee Fellowship 07/733(0181)/2013-EMR-I)

  • Krishnendu Guin

Department of Biotechnology , Ministry of Science and Technology (BT/PR27490/Med/29/1323/2018)

  • Kaustuv Sanyal

Ministry of Education - Singapore (RG39/18)

  • Amartya Sanyal

Department of Biotechnology , Ministry of Science and Technology

  • Kaustuv Sanyal

Nanyang Technological University (Nanyang Assistant Professorship grant)

  • Amartya Sanyal

Department of Biotechnology , Ministry of Science and Technology

  • Kaustuv Sanyal

Department of Biotechnology , Ministry of Science and Technology

  • Kaustuv Sanyal

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Job Dekker, University of Massachusetts Medical School, United States

Publication history

  1. Received: May 4, 2020
  2. Accepted: May 22, 2020
  3. Accepted Manuscript published: May 29, 2020 (version 1)
  4. Version of Record published: June 12, 2020 (version 2)
  5. Version of Record updated: June 30, 2020 (version 3)

Copyright

© 2020, Guin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,416
    Page views
  • 281
    Downloads
  • 15
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Krishnendu Guin
  2. Yao Chen
  3. Radha Mishra
  4. Siti Rawaidah B M Muzaki
  5. Bhagya C Thimmappa
  6. Caoimhe E O'Brien
  7. Geraldine Butler
  8. Amartya Sanyal
  9. Kaustuv Sanyal
(2020)
Spatial inter-centromeric interactions facilitated the emergence of evolutionary new centromeres
eLife 9:e58556.
https://doi.org/10.7554/eLife.58556

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Zhanwu Zhu, Jingjing Liu ... Bo Cheng
    Research Article

    Dynamic regulation of transcription is crucial for the cellular responses to various environmental or developmental cues. Gdown1 is a ubiquitously expressed, RNA polymerase II (Pol II) interacting protein, essential for the embryonic development of metazoan. It tightly binds Pol II in vitro and competitively blocks the binding of TFIIF and possibly other transcriptional regulatory factors, yet its cellular functions and regulatory circuits remain unclear. Here, we show that human GDOWN1 strictly localizes in the cytoplasm of various types of somatic cells and exhibits a potent resistance to the imposed driving force for its nuclear localization. Combined with the genetic and microscope-based approaches, two types of the functionally coupled and evolutionally conserved localization regulatory motifs are identified, including the CRM1-dependent nucleus export signal (NES) and a novel Cytoplasmic Anchoring Signal (CAS) that mediates its retention outside of the nuclear pore complexes (NPC). Mutagenesis of CAS alleviates GDOWN1’s cytoplasmic retention, thus unlocks its nucleocytoplasmic shuttling properties, and the increased nuclear import and accumulation of GDOWN1 results in a drastic reduction of both Pol II and its associated global transcription levels. Importantly, the nuclear translocation of GDOWN1 occurs in response to the oxidative stresses, and the ablation of GDOWN1 significantly weakens the cellular tolerance. Collectively, our work uncovers the molecular basis of GDOWN1’s subcellular localization and a novel cellular strategy of modulating global transcription and stress-adaptation via controlling the nuclear translocation of GDOWN1.

    1. Chromosomes and Gene Expression
    Jiahui Zhang, Cheng-Zhong Zhang
    Insight

    In a departure from previous findings, new results suggest that free-floating pieces of DNA which carry additional copies of cancer-driving genes do not tend to cluster or have increased transcription.