Spatial inter-centromeric interactions facilitated the emergence of evolutionary new centromeres

  1. Krishnendu Guin
  2. Yao Chen
  3. Radha Mishra
  4. Siti Rawaidah B M Muzaki
  5. Bhagya C Thimmappa
  6. Caoimhe E O'Brien
  7. Geraldine Butler
  8. Amartya Sanyal  Is a corresponding author
  9. Kaustuv Sanyal  Is a corresponding author
  1. Jawaharlal Nehru Centre for Advanced Scientific Research, India
  2. Nanyang Technological University, Singapore
  3. University College Dublin, Ireland
  4. Conway Institute, University College Dublin, Ireland

Abstract

Centromeres of Candida albicans form on unique and different DNA sequences but a closely related species, Candida tropicalis, possesses homogenized inverted repeat (HIR)-associated centromeres. To investigate the mechanism of centromere type transition, we improved the fragmented genome assembly and constructed a chromosome-level genome assembly of C. tropicalis by employing PacBio sequencing, chromosome conformation capture sequencing (3C-seq), chromoblot, and genetic analysis of engineered aneuploid strains. Further, we analyzed the 3D genome organization using 3C-seq data, which revealed spatial proximity among the centromeres as well as telomeres of seven chromosomes in C. tropicalis. Intriguingly, we observed evidence of inter-centromeric translocations in the common ancestor of C. albicans and C. tropicalis. Identification of putative centromeres in closely related Candida sojae, Candida viswanathii and Candida parapsilosis indicates loss of ancestral HIR-associated centromeres and establishment of evolutionary new centromeres (ENCs) in C. albicans. We propose that spatial proximity of the homologous centromere DNA sequences facilitated karyotype rearrangements and centromere type transitions in human pathogenic yeasts of the CUG-Ser1 clade.

Data availability

All sequencing data reported in the study and the genome assembly of C. tropicalis and C. sojae have been submitted to NCBI under the BioProject accession numbers PRJNA596050 and PRJNA604451

The following data sets were generated

Article and author information

Author details

  1. Krishnendu Guin

    Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6957-465X
  2. Yao Chen

    Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  3. Radha Mishra

    Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  4. Siti Rawaidah B M Muzaki

    Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  5. Bhagya C Thimmappa

    Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  6. Caoimhe E O'Brien

    University College Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  7. Geraldine Butler

    Conway Institute, University College Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  8. Amartya Sanyal

    Nanyang Technological University, Singapore, Singapore
    For correspondence
    asanyal@ntu.edu.sg
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2109-4478
  9. Kaustuv Sanyal

    Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
    For correspondence
    sanyal@jncasr.ac.in
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6611-4073

Funding

Council of Scientific and Industrial Research (Shyama Prasad Mukherjee Fellowship 07/733(0181)/2013-EMR-I)

  • Krishnendu Guin

Department of Biotechnology , Ministry of Science and Technology (BT/PR27490/Med/29/1323/2018)

  • Kaustuv Sanyal

Ministry of Education - Singapore (RG39/18)

  • Amartya Sanyal

Department of Biotechnology , Ministry of Science and Technology

  • Kaustuv Sanyal

Nanyang Technological University (Nanyang Assistant Professorship grant)

  • Amartya Sanyal

Department of Biotechnology , Ministry of Science and Technology

  • Kaustuv Sanyal

Department of Biotechnology , Ministry of Science and Technology

  • Kaustuv Sanyal

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Guin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,060
    views
  • 346
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Krishnendu Guin
  2. Yao Chen
  3. Radha Mishra
  4. Siti Rawaidah B M Muzaki
  5. Bhagya C Thimmappa
  6. Caoimhe E O'Brien
  7. Geraldine Butler
  8. Amartya Sanyal
  9. Kaustuv Sanyal
(2020)
Spatial inter-centromeric interactions facilitated the emergence of evolutionary new centromeres
eLife 9:e58556.
https://doi.org/10.7554/eLife.58556

Share this article

https://doi.org/10.7554/eLife.58556

Further reading

    1. Chromosomes and Gene Expression
    2. Neuroscience
    Robyn D Moir, Emilio Merheb ... Ian M Willis
    Research Article

    Pathogenic variants in subunits of RNA polymerase (Pol) III cause a spectrum of Polr3-related neurodegenerative diseases including 4H leukodystrophy. Disease onset occurs from infancy to early adulthood and is associated with a variable range and severity of neurological and non-neurological features. The molecular basis of Polr3-related disease pathogenesis is unknown. We developed a postnatal whole-body mouse model expressing pathogenic Polr3a mutations to examine the molecular mechanisms by which reduced Pol III transcription results primarily in central nervous system phenotypes. Polr3a mutant mice exhibit behavioral deficits, cerebral pathology and exocrine pancreatic atrophy. Transcriptome and immunohistochemistry analyses of cerebra during disease progression show a reduction in most Pol III transcripts, induction of innate immune and integrated stress responses and cell-type-specific gene expression changes reflecting neuron and oligodendrocyte loss and microglial activation. Earlier in the disease when integrated stress and innate immune responses are minimally induced, mature tRNA sequencing revealed a global reduction in tRNA levels and an altered tRNA profile but no changes in other Pol III transcripts. Thus, changes in the size and/or composition of the tRNA pool have a causal role in disease initiation. Our findings reveal different tissue- and brain region-specific sensitivities to a defect in Pol III transcription.

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ting-Wen Chen, Hsiao-Wei Liao ... Chung-Te Chang
    Research Article

    The mRNA 5'-cap structure removal by the decapping enzyme DCP2 is a critical step in gene regulation. While DCP2 is the catalytic subunit in the decapping complex, its activity is strongly enhanced by multiple factors, particularly DCP1, which is the major activator in yeast. However, the precise role of DCP1 in metazoans has yet to be fully elucidated. Moreover, in humans, the specific biological functions of the two DCP1 paralogs, DCP1a and DCP1b, remain largely unknown. To investigate the role of human DCP1, we generated cell lines that were deficient in DCP1a, DCP1b, or both to evaluate the importance of DCP1 in the decapping machinery. Our results highlight the importance of human DCP1 in decapping process and show that the EVH1 domain of DCP1 enhances the mRNA-binding affinity of DCP2. Transcriptome and metabolome analyses outline the distinct functions of DCP1a and DCP1b in human cells, regulating specific endogenous mRNA targets and biological processes. Overall, our findings provide insights into the molecular mechanism of human DCP1 in mRNA decapping and shed light on the distinct functions of its paralogs.