The dynamic nature of the human Origin Recognition Complex revealed through five cryoEM structures

  1. Matt J Jaremko
  2. Kin Fan On
  3. Dennis R Thomas
  4. Bruce Stillman
  5. Leemor Joshua-Tor  Is a corresponding author
  1. Cold Spring Harbor Laboratory/HHMI, United States
  2. Cold Spring Harbor Laboratory, United States

Abstract

Genome replication is initiated from specific origin sites established by dynamic events. The Origin Recognition Complex (ORC) is necessary for orchestrating the initiation process by binding to origin DNA, recruiting CDC6, and assembling the MCM replicative helicase on DNA. Here we report five cryoEM structures of the human ORC (HsORC) that illustrate the native flexibility of the complex. The absence of ORC1 revealed a compact, stable complex of ORC2-5. Introduction of ORC1 opens the complex into several dynamic conformations. Two structures revealed dynamic movements of the ORC1 AAA+ and ORC2 winged-helix domains that likely impact DNA incorporation into the ORC core. Additional twist and pinch motions were observed in an open ORC conformation revealing a hinge at the ORC5·3 interface that may facilitate ORC binding to DNA. Finally, a structure of ORC was determined with endogenous DNA bound in the core revealing important differences between human and yeast origin recognition.

Data availability

All coordinates and cryoEM maps have deposited in the PDB and EMDB:ORC-O1AAA:PDB code: 7JPOEMDB code: EMD-22417ORC-O2WH:PDB code: 7JPPEMDB code: EMD-22418ORC-O2-5:PDB code: 7JPQEMDB code: EMD-22419ORC-OPEN:PDB code: 7JPREMDB code: EMD-22420ORC-DNA:PDB code: 7JPSEMDB code: EMD-22421

The following data sets were generated

Article and author information

Author details

  1. Matt J Jaremko

    Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory/HHMI, Cold Spring Harbor, United States
    Competing interests
    No competing interests declared.
  2. Kin Fan On

    Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory/HHMI, Cold Spring Harbor, United States
    Competing interests
    No competing interests declared.
  3. Dennis R Thomas

    Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    No competing interests declared.
  4. Bruce Stillman

    none, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
    Competing interests
    Bruce Stillman, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9453-4091
  5. Leemor Joshua-Tor

    Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory/HHMI, Cold Spring Harbor, United States
    For correspondence
    leemor@cshl.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8185-8049

Funding

Howard Hughes Medical Institute (N/A)

  • Leemor Joshua-Tor

National Institutes of Health (F32GM129923)

  • Matt J Jaremko

National Academies of Sciences, Engineering, and Medicine (GM45436)

  • Bruce Stillman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Jaremko et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,828
    views
  • 493
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matt J Jaremko
  2. Kin Fan On
  3. Dennis R Thomas
  4. Bruce Stillman
  5. Leemor Joshua-Tor
(2020)
The dynamic nature of the human Origin Recognition Complex revealed through five cryoEM structures
eLife 9:e58622.
https://doi.org/10.7554/eLife.58622

Share this article

https://doi.org/10.7554/eLife.58622

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bhumil Patel, Maryke Grobler ... Needhi Bhalla
    Research Article

    Meiotic crossover recombination is essential for both accurate chromosome segregation and the generation of new haplotypes for natural selection to act upon. This requirement is known as crossover assurance and is one example of crossover control. While the conserved role of the ATPase, PCH-2, during meiotic prophase has been enigmatic, a universal phenotype when pch-2 or its orthologs are mutated is a change in the number and distribution of meiotic crossovers. Here, we show that PCH-2 controls the number and distribution of crossovers by antagonizing their formation. This antagonism produces different effects at different stages of meiotic prophase: early in meiotic prophase, PCH-2 prevents double-strand breaks from becoming crossover-eligible intermediates, limiting crossover formation at sites of initial double-strand break formation and homolog interactions. Later in meiotic prophase, PCH-2 winnows the number of crossover-eligible intermediates, contributing to the designation of crossovers and ultimately, crossover assurance. We also demonstrate that PCH-2 accomplishes this regulation through the meiotic HORMAD, HIM-3. Our data strongly support a model in which PCH-2’s conserved role is to remodel meiotic HORMADs throughout meiotic prophase to destabilize crossover-eligible precursors and coordinate meiotic recombination with synapsis, ensuring the progressive implementation of meiotic recombination and explaining its function in the pachytene checkpoint and crossover control.

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Ashley L Cook, Surojit Sur ... Nicolas Wyhs
    Research Article

    Despite exciting developments in cancer immunotherapy, its broad application is limited by the paucity of targetable antigens on the tumor cell surface. As an intrinsic cellular pathway, nonsense-mediated decay (NMD) conceals neoantigens through the destruction of the RNA products from genes harboring truncating mutations. We developed and conducted a high-throughput screen, based on the ratiometric analysis of transcripts, to identify critical mediators of NMD in human cells. This screen implicated disruption of kinase SMG1’s phosphorylation of UPF1 as a potential disruptor of NMD. This led us to design a novel SMG1 inhibitor, KVS0001, that elevates the expression of transcripts and proteins resulting from human and murine truncating mutations in vitro and murine cells in vivo. Most importantly, KVS0001 concomitantly increased the presentation of immune-targetable human leukocyte antigens (HLA) class I-associated peptides from NMD-downregulated proteins on the surface of human cancer cells. KVS0001 provides new opportunities for studying NMD and the diseases in which NMD plays a role, including cancer and inherited diseases.