The dynamic nature of the human Origin Recognition Complex revealed through five cryoEM structures

  1. Matt J Jaremko
  2. Kin Fan On
  3. Dennis R Thomas
  4. Bruce Stillman
  5. Leemor Joshua-Tor  Is a corresponding author
  1. Cold Spring Harbor Laboratory/HHMI, United States
  2. Cold Spring Harbor Laboratory, United States

Abstract

Genome replication is initiated from specific origin sites established by dynamic events. The Origin Recognition Complex (ORC) is necessary for orchestrating the initiation process by binding to origin DNA, recruiting CDC6, and assembling the MCM replicative helicase on DNA. Here we report five cryoEM structures of the human ORC (HsORC) that illustrate the native flexibility of the complex. The absence of ORC1 revealed a compact, stable complex of ORC2-5. Introduction of ORC1 opens the complex into several dynamic conformations. Two structures revealed dynamic movements of the ORC1 AAA+ and ORC2 winged-helix domains that likely impact DNA incorporation into the ORC core. Additional twist and pinch motions were observed in an open ORC conformation revealing a hinge at the ORC5·3 interface that may facilitate ORC binding to DNA. Finally, a structure of ORC was determined with endogenous DNA bound in the core revealing important differences between human and yeast origin recognition.

Data availability

All coordinates and cryoEM maps have deposited in the PDB and EMDB:ORC-O1AAA:PDB code: 7JPOEMDB code: EMD-22417ORC-O2WH:PDB code: 7JPPEMDB code: EMD-22418ORC-O2-5:PDB code: 7JPQEMDB code: EMD-22419ORC-OPEN:PDB code: 7JPREMDB code: EMD-22420ORC-DNA:PDB code: 7JPSEMDB code: EMD-22421

The following data sets were generated

Article and author information

Author details

  1. Matt J Jaremko

    Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory/HHMI, Cold Spring Harbor, United States
    Competing interests
    No competing interests declared.
  2. Kin Fan On

    Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory/HHMI, Cold Spring Harbor, United States
    Competing interests
    No competing interests declared.
  3. Dennis R Thomas

    Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    No competing interests declared.
  4. Bruce Stillman

    none, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
    Competing interests
    Bruce Stillman, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9453-4091
  5. Leemor Joshua-Tor

    Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory/HHMI, Cold Spring Harbor, United States
    For correspondence
    leemor@cshl.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8185-8049

Funding

Howard Hughes Medical Institute (N/A)

  • Leemor Joshua-Tor

National Institutes of Health (F32GM129923)

  • Matt J Jaremko

National Academies of Sciences, Engineering, and Medicine (GM45436)

  • Bruce Stillman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Jaremko et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,757
    views
  • 480
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matt J Jaremko
  2. Kin Fan On
  3. Dennis R Thomas
  4. Bruce Stillman
  5. Leemor Joshua-Tor
(2020)
The dynamic nature of the human Origin Recognition Complex revealed through five cryoEM structures
eLife 9:e58622.
https://doi.org/10.7554/eLife.58622

Share this article

https://doi.org/10.7554/eLife.58622

Further reading

    1. Chromosomes and Gene Expression
    2. Neuroscience
    Robyn D Moir, Emilio Merheb ... Ian M Willis
    Research Article

    Pathogenic variants in subunits of RNA polymerase (Pol) III cause a spectrum of Polr3-related neurodegenerative diseases including 4H leukodystrophy. Disease onset occurs from infancy to early adulthood and is associated with a variable range and severity of neurological and non-neurological features. The molecular basis of Polr3-related disease pathogenesis is unknown. We developed a postnatal whole-body mouse model expressing pathogenic Polr3a mutations to examine the molecular mechanisms by which reduced Pol III transcription results primarily in central nervous system phenotypes. Polr3a mutant mice exhibit behavioral deficits, cerebral pathology and exocrine pancreatic atrophy. Transcriptome and immunohistochemistry analyses of cerebra during disease progression show a reduction in most Pol III transcripts, induction of innate immune and integrated stress responses and cell-type-specific gene expression changes reflecting neuron and oligodendrocyte loss and microglial activation. Earlier in the disease when integrated stress and innate immune responses are minimally induced, mature tRNA sequencing revealed a global reduction in tRNA levels and an altered tRNA profile but no changes in other Pol III transcripts. Thus, changes in the size and/or composition of the tRNA pool have a causal role in disease initiation. Our findings reveal different tissue- and brain region-specific sensitivities to a defect in Pol III transcription.

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ting-Wen Chen, Hsiao-Wei Liao ... Chung-Te Chang
    Research Article

    The mRNA 5'-cap structure removal by the decapping enzyme DCP2 is a critical step in gene regulation. While DCP2 is the catalytic subunit in the decapping complex, its activity is strongly enhanced by multiple factors, particularly DCP1, which is the major activator in yeast. However, the precise role of DCP1 in metazoans has yet to be fully elucidated. Moreover, in humans, the specific biological functions of the two DCP1 paralogs, DCP1a and DCP1b, remain largely unknown. To investigate the role of human DCP1, we generated cell lines that were deficient in DCP1a, DCP1b, or both to evaluate the importance of DCP1 in the decapping machinery. Our results highlight the importance of human DCP1 in decapping process and show that the EVH1 domain of DCP1 enhances the mRNA-binding affinity of DCP2. Transcriptome and metabolome analyses outline the distinct functions of DCP1a and DCP1b in human cells, regulating specific endogenous mRNA targets and biological processes. Overall, our findings provide insights into the molecular mechanism of human DCP1 in mRNA decapping and shed light on the distinct functions of its paralogs.