The dynamic nature of the human Origin Recognition Complex revealed through five cryoEM structures

  1. Matt J Jaremko
  2. Kin Fan On
  3. Dennis R Thomas
  4. Bruce Stillman
  5. Leemor Joshua-Tor  Is a corresponding author
  1. Cold Spring Harbor Laboratory/HHMI, United States
  2. Cold Spring Harbor Laboratory, United States

Abstract

Genome replication is initiated from specific origin sites established by dynamic events. The Origin Recognition Complex (ORC) is necessary for orchestrating the initiation process by binding to origin DNA, recruiting CDC6, and assembling the MCM replicative helicase on DNA. Here we report five cryoEM structures of the human ORC (HsORC) that illustrate the native flexibility of the complex. The absence of ORC1 revealed a compact, stable complex of ORC2-5. Introduction of ORC1 opens the complex into several dynamic conformations. Two structures revealed dynamic movements of the ORC1 AAA+ and ORC2 winged-helix domains that likely impact DNA incorporation into the ORC core. Additional twist and pinch motions were observed in an open ORC conformation revealing a hinge at the ORC5·3 interface that may facilitate ORC binding to DNA. Finally, a structure of ORC was determined with endogenous DNA bound in the core revealing important differences between human and yeast origin recognition.

Data availability

All coordinates and cryoEM maps have deposited in the PDB and EMDB:ORC-O1AAA:PDB code: 7JPOEMDB code: EMD-22417ORC-O2WH:PDB code: 7JPPEMDB code: EMD-22418ORC-O2-5:PDB code: 7JPQEMDB code: EMD-22419ORC-OPEN:PDB code: 7JPREMDB code: EMD-22420ORC-DNA:PDB code: 7JPSEMDB code: EMD-22421

The following data sets were generated

Article and author information

Author details

  1. Matt J Jaremko

    Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory/HHMI, Cold Spring Harbor, United States
    Competing interests
    No competing interests declared.
  2. Kin Fan On

    Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory/HHMI, Cold Spring Harbor, United States
    Competing interests
    No competing interests declared.
  3. Dennis R Thomas

    Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    No competing interests declared.
  4. Bruce Stillman

    none, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
    Competing interests
    Bruce Stillman, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9453-4091
  5. Leemor Joshua-Tor

    Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory/HHMI, Cold Spring Harbor, United States
    For correspondence
    leemor@cshl.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8185-8049

Funding

Howard Hughes Medical Institute (N/A)

  • Leemor Joshua-Tor

National Institutes of Health (F32GM129923)

  • Matt J Jaremko

National Academies of Sciences, Engineering, and Medicine (GM45436)

  • Bruce Stillman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Jaremko et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,792
    views
  • 485
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matt J Jaremko
  2. Kin Fan On
  3. Dennis R Thomas
  4. Bruce Stillman
  5. Leemor Joshua-Tor
(2020)
The dynamic nature of the human Origin Recognition Complex revealed through five cryoEM structures
eLife 9:e58622.
https://doi.org/10.7554/eLife.58622

Share this article

https://doi.org/10.7554/eLife.58622

Further reading

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Ananda Kishore Mukherjee, Subhajit Dutta ... Shantanu Chowdhury
    Research Article

    Telomeres are crucial for cancer progression. Immune signalling in the tumour microenvironment has been shown to be very important in cancer prognosis. However, the mechanisms by which telomeres might affect tumour immune response remain poorly understood. Here, we observed that interleukin-1 signalling is telomere-length dependent in cancer cells. Mechanistically, non-telomeric TRF2 (telomeric repeat binding factor 2) binding at the IL-1-receptor type-1 (IL1R1) promoter was found to be affected by telomere length. Enhanced TRF2 binding at the IL1R1 promoter in cells with short telomeres directly recruited the histone-acetyl-transferase (HAT) p300, and consequent H3K27 acetylation activated IL1R1. This altered NF-kappa B signalling and affected downstream cytokines like IL6, IL8, and TNF. Further, IL1R1 expression was telomere-sensitive in triple-negative breast cancer (TNBC) clinical samples. Infiltration of tumour-associated macrophages (TAM) was also sensitive to the length of tumour cell telomeres and highly correlated with IL1R1 expression. The use of both IL1 Receptor antagonist (IL1RA) and IL1R1 targeting ligands could abrogate M2 macrophage infiltration in TNBC tumour organoids. In summary, using TNBC cancer tissue (>90 patients), tumour-derived organoids, cancer cells, and xenograft tumours with either long or short telomeres, we uncovered a heretofore undeciphered function of telomeres in modulating IL1 signalling and tumour immunity.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bethany M Bartlett, Yatendra Kumar ... Wendy A Bickmore
    Research Article Updated

    During oncogene-induced senescence there are striking changes in the organisation of heterochromatin in the nucleus. This is accompanied by activation of a pro-inflammatory gene expression programme – the senescence-associated secretory phenotype (SASP) – driven by transcription factors such as NF-κB. The relationship between heterochromatin re-organisation and the SASP has been unclear. Here, we show that TPR, a protein of the nuclear pore complex basket required for heterochromatin re-organisation during senescence, is also required for the very early activation of NF-κB signalling during the stress-response phase of oncogene-induced senescence. This is prior to activation of the SASP and occurs without affecting NF-κB nuclear import. We show that TPR is required for the activation of innate immune signalling at these early stages of senescence and we link this to the formation of heterochromatin-enriched cytoplasmic chromatin fragments thought to bleb off from the nuclear periphery. We show that HMGA1 is also required for cytoplasmic chromatin fragment formation. Together these data suggest that re-organisation of heterochromatin is involved in altered structural integrity of the nuclear periphery during senescence, and that this can lead to activation of cytoplasmic nucleic acid sensing, NF-κB signalling, and activation of the SASP.