Functional partitioning of a liquid-like organelle during assembly of axonemal dyneins

  1. Chanjae Lee
  2. Rachael M Cox
  3. Ophelia Papoulas
  4. Amjad Horani
  5. Kevin Drew
  6. Caitlin C Devitt
  7. Steven L Brody
  8. Edward M Marcotte  Is a corresponding author
  9. John B Wallingford  Is a corresponding author
  1. University of Texas at Austin, United States
  2. Washington University School of Medicine, United States

Abstract

Ciliary motility is driven by axonemal dyneins that are assembled in the cytoplasm before deployment to cilia. Motile ciliopathy can result from defects in the dyneins themselves or from defects in factors required for their cytoplasmic pre-assembly. Recent work demonstrates that axonemal dyneins, their specific assembly factors, and broadly acting chaperones are concentrated in liquid-like organelles in the cytoplasm called DynAPs (Dynein Axonemal Particles). Here, we use in vivo imaging in Xenopus to show that inner dynein arm (IDA) and outer dynein arm (ODA) subunits are partitioned into non-overlapping sub-regions within DynAPs. Using affinity purification mass-spectrometry of in vivo interaction partners, we also identify novel partners for inner and outer dynein arms. Among these, we identify C16orf71/Daap1 as a novel axonemal dynein regulator. Daap1 interacts with ODA subunits, localizes specifically to the cytoplasm, is enriched in DynAPs, and is required for the deployment of ODAs to axonemes. Our work reveals a new complexity in the structure and function of a cell-type specific liquid-like organelle that is directly relevant to human genetic disease.

Data availability

Proteomics data has been deposited into Massive which in turn was passed to ProteomeXchange. The Massive accession # is: MSV000085075 The ProteomeXchange # is PXD017980 as noted in the paper. The direct link is http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD017980The direct link to the data ftp site is ftp://massive.ucsd.edu/MSV000085075/. These data are also provided in Supp. Tables 1-3.

The following data sets were generated

Article and author information

Author details

  1. Chanjae Lee

    Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Rachael M Cox

    Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ophelia Papoulas

    Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Amjad Horani

    Department of Pediatrics, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5352-1948
  5. Kevin Drew

    Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Caitlin C Devitt

    Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Steven L Brody

    Department of Medicine (Pulmonary Division), Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Edward M Marcotte

    Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
    For correspondence
    marcotte@icmb.utexas.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8808-180X
  9. John B Wallingford

    Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
    For correspondence
    wallingford@austin.utexas.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6280-8625

Funding

NICHD (HD085901)

  • John B Wallingford

NHLBI (HL117164)

  • John B Wallingford

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were performed in strict accordance with the UT IACU protocol # AUP-2018-00225

Reviewing Editor

  1. Andrew P Carter, MRC Laboratory of Molecular Biology, United Kingdom

Publication history

  1. Received: May 7, 2020
  2. Accepted: December 1, 2020
  3. Accepted Manuscript published: December 2, 2020 (version 1)
  4. Version of Record published: January 5, 2021 (version 2)

Copyright

© 2020, Lee et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,265
    Page views
  • 215
    Downloads
  • 9
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chanjae Lee
  2. Rachael M Cox
  3. Ophelia Papoulas
  4. Amjad Horani
  5. Kevin Drew
  6. Caitlin C Devitt
  7. Steven L Brody
  8. Edward M Marcotte
  9. John B Wallingford
(2020)
Functional partitioning of a liquid-like organelle during assembly of axonemal dyneins
eLife 9:e58662.
https://doi.org/10.7554/eLife.58662

Further reading

    1. Cell Biology
    Desiree Schatton et al.
    Research Article

    Proliferating cells undergo metabolic changes in synchrony with cell cycle progression and cell division. Mitochondria provide fuel, metabolites, and ATP during different phases of the cell cycle, however it is not completely understood how mitochondrial function and the cell cycle are coordinated. CLUH is a post-transcriptional regulator of mRNAs encoding mitochondrial proteins involved in oxidative phosphorylation and several metabolic pathways. Here, we show a role of CLUH in regulating the expression of astrin, which is involved in metaphase to anaphase progression, centrosome integrity, and mTORC1 inhibition. We find that CLUH binds both the SPAG5 mRNA and its product astrin, and controls the synthesis and the stability of the full-length astrin-1 isoform. We show that CLUH interacts with astrin-1 specifically during interphase. Astrin-depleted cells show mTORC1 hyperactivation and enhanced anabolism. On the other hand, cells lacking CLUH show decreased astrin levels and increased mTORC1 signaling, but cannot sustain anaplerotic and anabolic pathways. In absence of CLUH, cells fail to grow during G1, and progress faster through the cell cycle, indicating dysregulated matching of growth, metabolism and cell cycling. Our data reveal a role of CLUH in coupling growth signaling pathways and mitochondrial metabolism with cell cycle progression.

    1. Cell Biology
    Dillon Jevon et al.
    Research Article

    A developing understanding suggests that spatial compartmentalisation in pancreatic β cells is critical in controlling insulin secretion. To investigate the mechanisms, we have developed live-cell sub-cellular imaging methods using the mouse organotypic pancreatic slice. We demonstrate that the organotypic pancreatic slice, when compared with isolated islets, preserves intact β cell structure, and enhances glucose dependent Ca2+ responses and insulin secretion. Using the slice technique, we have discovered the essential role of local activation of integrins and the downstream component, focal adhesion kinase, in regulating β cells. Integrins and focal adhesion kinase are exclusively activated at the β cell capillary interface and using in situ and in vitro models we show their activation both positions presynaptic scaffold proteins, like ELKS and liprin, and regulates glucose dependent Ca2+ responses and insulin secretion. We conclude that focal adhesion kinase orchestrates the final steps of glucose dependent insulin secretion within the restricted domain where β cells contact the islet capillaries.