Social dominance mediates behavioral adaptation to chronic stress in a sex-specific manner

  1. Stoyo Karamihalev
  2. Elena Brivio
  3. Cornelia Flachskamm
  4. Rainer Stoffel
  5. Mathias V Schmidt
  6. Alon Chen  Is a corresponding author
  1. Max Planck Institute of Psychiatry, Germany
  2. Weizmann Institute of Science, Israel

Abstract

Sex differences and social context independently contribute to the development of stress-related disorders. However, less is known about how their interplay might influence behavior and physiology. Here we focused on social hierarchy status, a major component of the social environment in mice, and whether it influences the behavioral adaptation to chronic stress in a sex-specific manner. We used a high-throughput automated behavioral monitoring system to assess social dominance in same-sex group-living mice. We found that position in the social hierarchy at baseline was a significant predictor of multiple behavioral outcomes following exposure to chronic stress. Crucially, this association carried opposite consequences for the two sexes. This work demonstrates the importance of recognizing the interplay between sex and social factors and enhances our understating of how individual differences shape the stress response.

Data availability

All data used to support the findings of this work and the code used in performing the analyses and producing the figures for this manuscript is freely accessible in a GitHub repository:https://stoyokaramihalev.github.io/CMS_Dominance/The MATLAB-based mouse tracking system is available from the corresponding author upon request.

Article and author information

Author details

  1. Stoyo Karamihalev

    Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Elena Brivio

    Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6213-0973
  3. Cornelia Flachskamm

    Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Rainer Stoffel

    Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Mathias V Schmidt

    Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3788-2268
  6. Alon Chen

    Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
    For correspondence
    Alon.Chen@weizmann.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3625-8233

Funding

H2020 European Research Council (260463)

  • Alon Chen

Israel Science Foundation (1565/15 and 1916/12)

  • Alon Chen

Bundesministerium für Bildung und Forschung (01KU1501A)

  • Alon Chen

Max-Planck-Gesellschaft (Open-access funding)

  • Alon Chen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were approved by and conducted in accordance with the regulations of the local Animal Care and Use Committee (Government of Upper Bavaria, Munich, Germany), under licenses Az.: 55.2-1-54-2532-148-2012, Az.:55.2-1-54-2532-32-2016 and ROB-55.2-2532.Vet_02-18-50.

Copyright

© 2020, Karamihalev et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,037
    views
  • 636
    downloads
  • 62
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Stoyo Karamihalev
  2. Elena Brivio
  3. Cornelia Flachskamm
  4. Rainer Stoffel
  5. Mathias V Schmidt
  6. Alon Chen
(2020)
Social dominance mediates behavioral adaptation to chronic stress in a sex-specific manner
eLife 9:e58723.
https://doi.org/10.7554/eLife.58723

Share this article

https://doi.org/10.7554/eLife.58723

Further reading

    1. Neuroscience
    William T Redman, Santiago Acosta-Mendoza ... Michael J Goard
    Research Article

    Although grid cells are one of the most well-studied functional classes of neurons in the mammalian brain, whether there is a single orientation and spacing value per grid module has not been carefully tested. We analyze a recent large-scale recording of medial entorhinal cortex to characterize the presence and degree of heterogeneity of grid properties within individual modules. We find evidence for small, but robust, variability and hypothesize that this property of the grid code could enhance the encoding of local spatial information. Performing analysis on synthetic populations of grid cells, where we have complete control over the amount heterogeneity in grid properties, we demonstrate that grid property variability of a similar magnitude to the analyzed data leads to significantly decreased decoding error. This holds even when restricted to activity from a single module. Our results highlight how the heterogeneity of the neural response properties may benefit coding and opens new directions for theoretical and experimental analysis of grid cells.

    1. Neuroscience
    Maren Klingelhöfer-Jens, Katharina Hutterer ... Tina B Lonsdorf
    Research Article

    Childhood adversity is a strong predictor of developing psychopathological conditions. Multiple theories on the mechanisms underlying this association have been suggested which, however, differ in the operationalization of ‘exposure.’ Altered (threat) learning mechanisms represent central mechanisms by which environmental inputs shape emotional and cognitive processes and ultimately behavior. 1402 healthy participants underwent a fear conditioning paradigm (acquisition training, generalization), while acquiring skin conductance responses (SCRs) and ratings (arousal, valence, and contingency). Childhood adversity was operationalized as (1) dichotomization, and following (2) the specificity model, (3) the cumulative risk model, and (4) the dimensional model. Individuals exposed to childhood adversity showed blunted physiological reactivity in SCRs, but not ratings, and reduced CS+/CS- discrimination during both phases, mainly driven by attenuated CS+ responding. The latter was evident across different operationalizations of ‘exposure’ following the different theories. None of the theories tested showed clear explanatory superiority. Notably, a remarkably different pattern of increased responding to the CS- is reported in the literature for anxiety patients, suggesting that individuals exposed to childhood adversity may represent a specific sub-sample. We highlight that theories linking childhood adversity to (vulnerability to) psychopathology need refinement.