Specialized contributions of mid-tier stages of dorsal and ventral pathways to stereoscopic processing in macaque

  1. Toshihide W Yoshioka
  2. Takahiro Doi  Is a corresponding author
  3. Mohammad Abdolrahmani
  4. Ichiro Fujita  Is a corresponding author
  1. Osaka University, Japan
  2. University of Pennsylvania, United States
  3. RIKEN Center for Brain Science (CBS), Japan

Abstract

The division of labor between the dorsal and ventral visual pathways has been well studied, but not often with direct comparison at the single-neuron resolution with matched stimuli. Here we directly compared how single neurons in MT and V4, mid-tier areas of the two pathways, process binocular disparity, a powerful cue for 3D perception and actions. We found that MT neurons transmitted disparity signals more quickly and robustly, whereas V4 or its upstream neurons transformed the signals into sophisticated representations more prominently. Therefore, signaling speed and robustness were traded for transformation between the dorsal and ventral pathways. The key factor in this tradeoff was disparity-tuning shape: V4 neurons had more even-symmetric tuning than MT neurons. Moreover, the tuning symmetry predicted the degree of signal transformation across neurons similarly within each area, implying a general role of tuning symmetry in the stereoscopic processing by the two pathways.

Data availability

Source data files have been provided for all data figures.

Article and author information

Author details

  1. Toshihide W Yoshioka

    Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6475-4627
  2. Takahiro Doi

    Departments of Neuroscience and Psychology, University of Pennsylvania, Philadelphia, United States
    For correspondence
    doi.takah@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9650-972X
  3. Mohammad Abdolrahmani

    Laboratory for Neural Circuits and Behavior, RIKEN Center for Brain Science (CBS), Wako, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3658-2623
  4. Ichiro Fujita

    Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
    For correspondence
    fujita@fbs.osaka-u.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3293-8610

Funding

Ministry of Education, Culture, Sports, Science and Technology (2324007)

  • Ichiro Fujita

Ministry of Education, Culture, Sports, Science and Technology (15H01437)

  • Ichiro Fujita

Ministry of Education, Culture, Sports, Science and Technology (17H01381)

  • Ichiro Fujita

Ministry of Education, Culture, Sports, Science and Technology (18H05007)

  • Ichiro Fujita

Ministry of Internal Affairs and Communications

  • Ichiro Fujita

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures in this study were approved by the Animal Experiment Committee (Permit Numbers: FBS-12-016, FBS-13-003-1) of Osaka University, and conformed to the Guide for the Care and Use of Laboratory Animals issued by the National Institutes of Health, USA.

Copyright

© 2021, Yoshioka et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,298
    views
  • 111
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Toshihide W Yoshioka
  2. Takahiro Doi
  3. Mohammad Abdolrahmani
  4. Ichiro Fujita
(2021)
Specialized contributions of mid-tier stages of dorsal and ventral pathways to stereoscopic processing in macaque
eLife 10:e58749.
https://doi.org/10.7554/eLife.58749

Share this article

https://doi.org/10.7554/eLife.58749

Further reading

    1. Neuroscience
    Lisa M Bas, Ian D Roberts ... Anita Tusche
    Research Article

    People selectively help others based on perceptions of their merit or need. Here, we develop a neurocomputational account of how these social perceptions translate into social choice. Using a novel fMRI social perception task, we show that both merit and need perceptions recruited the brain’s social inference network. A behavioral computational model identified two non-exclusive mechanisms underlying variance in social perceptions: a consistent tendency to perceive others as meritorious/needy (bias) and a propensity to sample and integrate normative evidence distinguishing high from low merit/need in other people (sensitivity). Variance in people’s merit (but not need) bias and sensitivity independently predicted distinct aspects of altruism in a social choice task completed months later. An individual’s merit bias predicted context-independent variance in people’s overall other-regard during altruistic choice, biasing people toward prosocial actions. An individual’s merit sensitivity predicted context-sensitive discrimination in generosity toward high and low merit recipients by influencing other- and self-regard during altruistic decision-making. This context-sensitive perception–action link was associated with activation in the right temporoparietal junction. Together, these findings point toward stable, biologically based individual differences in perceptual processes related to abstract social concepts like merit, and suggest that these differences may have important behavioral implications for an individual’s tendency toward favoritism or discrimination in social settings.

    1. Neuroscience
    Weihua Cai, Arkady Khoutorsky
    Insight

    Mice lacking two neuropeptides thought to be essential for processing pain show no change in how they respond to a wide range of harmful stimuli.