Altered N-glycan composition impacts flagella mediated adhesion in Chlamydomonas reinhardtii

  1. Nannan Xu
  2. Anne Oltmanns
  3. Longsheng Zhao
  4. Antoine Girot
  5. Marzieh Karimi
  6. Lara Hoepfner
  7. Simon Kelterborn
  8. Martin Scholz
  9. Julia Beißel
  10. Peter Hegemann
  11. Oliver Bäumchen
  12. Lu-Ning Liu
  13. Kaiyao Huang  Is a corresponding author
  14. Michael Hippler  Is a corresponding author
  1. Institute of Hydrobiology, Chinese Academy of Sciences, China
  2. University of Münster, Germany
  3. University of Liverpool, United Kingdom
  4. Max Planck Institute for Dynamics and Self-Organization, Germany
  5. Humboldt University of Berlin, Germany
  6. Max Planck Institute for Dynamics and Self Organization, Germany

Abstract

For the unicellular alga Chlamydomonas reinhardtii, the presence of N-glycosylated proteins on the surface of two flagella is crucial for both cell-cell interaction during mating and flagellar surface adhesion. However, it is not known whether only the presence or also the composition of N-glycans attached to respective proteins is important for these processes. To this end, we tested several C. reinhardtii insertional mutants and a CRISPR/Cas9 knockout mutant of xylosyltransferase 1A, all possessing altered N-glycan compositions. Taking advantage of atomic force microscopy and micropipette force measurements, our data revealed that reduction in N-glycan complexity impedes the adhesion force required for binding the flagella to surfaces. This results in impaired polystyrene bead binding and transport but not gliding of cells on solid surfaces. Notably, assembly, intraflagellar transport and protein import into flagella are not affected by altered N-glycosylation. Thus, we conclude that proper N-glycosylation of flagellar proteins is crucial for adhering C. reinhardtii cells onto surfaces, indicating that N-glycans mediate surface adhesion via direct surface contact.

Data availability

The mass spectrometry proteomics data (Figure 1) have been deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner repository with the dataset identifier PXD018353.

The following data sets were generated

Article and author information

Author details

  1. Nannan Xu

    Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Anne Oltmanns

    Institute for Plant Biology and Biotechnology, University of Münster, Münster, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Longsheng Zhao

    Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Antoine Girot

    Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Marzieh Karimi

    Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Lara Hoepfner

    Institute for Plant Biology and Biotechnology, University of Münster, Münster, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8222-4563
  7. Simon Kelterborn

    Institute of Biology, Humboldt University of Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Martin Scholz

    Biology, University of Münster, Münster, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Julia Beißel

    Biology, University of Münster, Münster, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Peter Hegemann

    Institute of Biology, Experimental Biophysics, Humboldt University of Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3589-6452
  11. Oliver Bäumchen

    Max Planck Institute for Dynamics and Self Organization, Goettingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4879-0369
  12. Lu-Ning Liu

    Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8884-4819
  13. Kaiyao Huang

    Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
    For correspondence
    huangky@ihb.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8669-1065
  14. Michael Hippler

    Institute for Plant Biology and Biotechnology, University of Münster, Münster, Germany
    For correspondence
    mhippler@uni-muenster.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9670-6101

Funding

Deutsche Forschungsgemeinschaft (Hi 737 / 12-1)

  • Michael Hippler

National Natural Science Foundation of China (Grant 31671399)

  • Kaiyao Huang

Royal Society (UF120411,URF\R\180030,RGF\EA\181061 and RGF\EA\180233)

  • Lu-Ning Liu

Biotechnology and Biological Sciences Research Council (BB/R003890/1,BB/M012441/1)

  • Lu-Ning Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Xu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,844
    views
  • 277
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nannan Xu
  2. Anne Oltmanns
  3. Longsheng Zhao
  4. Antoine Girot
  5. Marzieh Karimi
  6. Lara Hoepfner
  7. Simon Kelterborn
  8. Martin Scholz
  9. Julia Beißel
  10. Peter Hegemann
  11. Oliver Bäumchen
  12. Lu-Ning Liu
  13. Kaiyao Huang
  14. Michael Hippler
(2020)
Altered N-glycan composition impacts flagella mediated adhesion in Chlamydomonas reinhardtii
eLife 9:e58805.
https://doi.org/10.7554/eLife.58805

Share this article

https://doi.org/10.7554/eLife.58805

Further reading

    1. Cell Biology
    2. Plant Biology
    Masanori Izumi, Sakuya Nakamura ... Shinya Hagihara
    Research Article

    Plants distribute many nutrients to chloroplasts during leaf development and maturation. When leaves senesce or experience sugar starvation, the autophagy machinery degrades chloroplast proteins to facilitate efficient nutrient reuse. Here, we report on the intracellular dynamics of an autophagy pathway responsible for piecemeal degradation of chloroplast components. Through live-cell monitoring of chloroplast morphology, we observed the formation of chloroplast budding structures in sugar-starved leaves. These buds were then released and incorporated into the vacuolar lumen as an autophagic cargo termed a Rubisco-containing body. The budding structures did not accumulate in mutants of core autophagy machinery, suggesting that autophagosome creation is required for forming chloroplast buds. Simultaneous tracking of chloroplast morphology and autophagosome development revealed that the isolation membranes of autophagosomes interact closely with part of the chloroplast surface before forming chloroplast buds. Chloroplasts then protrude at the site associated with the isolation membranes, which divide synchronously with autophagosome maturation. This autophagy-related division does not require DYNAMIN-RELATED PROTEIN 5B, which constitutes the division ring for chloroplast proliferation in growing leaves. An unidentified division machinery may thus fragment chloroplasts for degradation in coordination with the development of the chloroplast-associated isolation membrane.

    1. Plant Biology
    Koji Kato, Yoshiki Nakajima ... Ryo Nagao
    Research Article

    Photosynthetic organisms exhibit remarkable diversity in their light-harvesting complexes (LHCs). LHCs are associated with photosystem I (PSI), forming a PSI-LHCI supercomplex. The number of LHCI subunits, along with their protein sequences and pigment compositions, has been found to differ greatly among the PSI-LHCI structures. However, the mechanisms by which LHCIs recognize their specific binding sites within the PSI core remain unclear. In this study, we determined the cryo-electron microscopy structure of a PSI supercomplex incorporating fucoxanthin chlorophyll a/c-binding proteins (FCPs), designated as PSI-FCPI, isolated from the diatom Thalassiosira pseudonana CCMP1335. Structural analysis of PSI-FCPI revealed five FCPI subunits associated with a PSI monomer; these subunits were identified as RedCAP, Lhcr3, Lhcq10, Lhcf10, and Lhcq8. Through structural and sequence analyses, we identified specific protein–protein interactions at the interfaces between FCPI and PSI subunits, as well as among FCPI subunits themselves. Comparative structural analyses of PSI-FCPI supercomplexes, combined with phylogenetic analysis of FCPs from T. pseudonana and the diatom Chaetoceros gracilis, underscore the evolutionary conservation of protein motifs crucial for the selective binding of individual FCPI subunits. These findings provide significant insights into the molecular mechanisms underlying the assembly and selective binding of FCPIs in diatoms.