Cryo-EM structures of human ZnT8 in both outward- and inward-facing conformations
Abstract
ZnT8 is a Zn2+/H+ antiporter that belongs to SLC30 family and plays an essential role in regulating Zn2+ accumulation in the insulin secretory granules of pancreatic β cells. Dysfunction of ZnT8 is associated with both type 1 and 2 diabetes. However, the Zn2+/H+ exchange mechanism of ZnT8 remains unclear due to the lack of high-resolution structures. Here, we report the cryo-EM structures of human ZnT8 (HsZnT8) in both outward- and inward-facing conformations. HsZnT8 forms a dimeric structure with four Zn2+ binding sites within each subunit: a highly conserved primary site in transmembrane domain (TMD) housing the Zn2+ substrate; an interfacial site between TMD and C-terminal domain (CTD) that modulates the Zn2+ transport activity of HsZnT8; and two adjacent sites buried in the cytosolic domain and chelated by conserved residues from CTD and the His-Cys-His (HCH) motif from the N-terminal segment of the neighboring subunit. A comparison of the outward- and inward-facing structures reveals that the TMD of each HsZnT8 subunit undergoes a large structural rearrangement, allowing for alternating access to the primary Zn2+ site during the transport cycle. Collectively, our studies provide the structural insights into the Zn2+/H+ exchange mechanism of HsZnT8.
Data availability
The Cryo-EM maps of HsZnT8 determined in three different conditions will have been deposited in the Electron Microscopy Data Bank and. The corresponding atomic coordinates will be deposited to the RCSB Protein Data Bank, with the entry ID: EMD-22285 and PDB 6XPD for the structure of HsZnT8-DM, EMD-22286 and PDB 6XPE for the structure of HsZnT8-WT in the presence of zinc, and EMD-22287 and PDB 6XPF for the structure of HsZnT8-WT in the absence of zinc. Source data files have been provided for Figure 2h and 2i.
-
Structural basis for the autoregulation of the zinc transporter YiiPElectron Microscopy Data Bank, 3h90.
-
CryoEM Structure of the Zinc Transporter YiiP from helical crystalsElectron Microscopy Data Bank, 5vrf.
Article and author information
Author details
Funding
National Institute of General Medical Sciences (R01GM136976)
- Xiao-chen Bai
Welch Foundation (I-1944)
- Xiao-chen Bai
Cancer Prevention and Research Institute of Texas (RP160082)
- Xiao-chen Bai
Howard Hughes Medical Institute
- Youxing Jiang
National Institute of General Medical Sciences (GM079179)
- Youxing Jiang
Welch Foundation (I-1578)
- Youxing Jiang
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2020, Xue et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 5,423
- views
-
- 945
- downloads
-
- 58
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Structural Biology and Molecular Biophysics
SCARF1 (scavenger receptor class F member 1, SREC-1 or SR-F1) is a type I transmembrane protein that recognizes multiple endogenous and exogenous ligands such as modified low-density lipoproteins (LDLs) and is important for maintaining homeostasis and immunity. But the structural information and the mechanisms of ligand recognition of SCARF1 are largely unavailable. Here, we solve the crystal structures of the N-terminal fragments of human SCARF1, which show that SCARF1 forms homodimers and its epidermal growth factor (EGF)-like domains adopt a long-curved conformation. Then, we examine the interactions of SCARF1 with lipoproteins and are able to identify a region on SCARF1 for recognizing modified LDLs. The mutagenesis data show that the positively charged residues in the region are crucial for the interaction of SCARF1 with modified LDLs, which is confirmed by making chimeric molecules of SCARF1 and SCARF2. In addition, teichoic acids, a cell wall polymer expressed on the surface of gram-positive bacteria, are able to inhibit the interactions of modified LDLs with SCARF1, suggesting the ligand binding sites of SCARF1 might be shared for some of its scavenging targets. Overall, these results provide mechanistic insights into SCARF1 and its interactions with the ligands, which are important for understanding its physiological roles in homeostasis and the related diseases.
-
- Biochemistry and Chemical Biology
- Structural Biology and Molecular Biophysics
Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.