Abstract

Low-dimensional linear dynamics are observed in neuronal population activity in primary motor cortex (M1) when monkeys make reaching movements. This population-level behavior is consistent with a role for M1 as an autonomous pattern generator that drives muscles to give rise to movement. In the present study, we examine whether similar dynamics are also observed during grasping movements, which involve fundamentally different patterns of kinematics and muscle activations. Using a variety of analytical approaches, we show that M1 does not exhibit such dynamics during grasping movements. Rather, the grasp-related neuronal dynamics in M1 are similar to their counterparts in somatosensory cortex, whose activity is driven primarily by afferent inputs rather than by intrinsic dynamics. The basic structure of the neuronal activity underlying hand control is thus fundamentally different from that underlying arm control.

Data availability

The data that support the findings of this study have been deposited in Dryad, accessible at https://doi.org/10.5061/dryad.xsj3tx9cm

The following data sets were generated

Article and author information

Author details

  1. Aneesha K Suresh

    Computational Neuroscience, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. James M Goodman

    Computational Neuroscience, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Elizaveta V Okorokova

    Computational Neuroscience, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2719-2706
  4. Matthew Kaufman

    Department of Oganismal Biology and Anatomy, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Nicholas G Hatsopoulos

    Department of Organismal Biology and Anatomy, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Sliman J Bensmaia

    Organismal Biology and Anatomy, University of Chicago, Chicago, United States
    For correspondence
    sliman@uchicago.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4039-9135

Funding

National Institute of Neurological Disorders and Stroke (NS082865)

  • Nicholas G Hatsopoulos
  • Sliman J Bensmaia

National Institute of Neurological Disorders and Stroke (NS096952)

  • Aneesha K Suresh

National Institute of Neurological Disorders and Stroke (NS045853)

  • Nicholas G Hatsopoulos

National Institute of Neurological Disorders and Stroke (NS111982)

  • Nicholas G Hatsopoulos

National Institute of Neurological Disorders and Stroke (NS101325)

  • Sliman J Bensmaia

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All surgical, behavioral, and experimental procedures conformed to the guidelines of the National Institutes of Health and were approved by the University of Chicago Institutional Animal Care and Use Committee (#72042).

Copyright

© 2020, Suresh et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,877
    views
  • 732
    downloads
  • 43
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Aneesha K Suresh
  2. James M Goodman
  3. Elizaveta V Okorokova
  4. Matthew Kaufman
  5. Nicholas G Hatsopoulos
  6. Sliman J Bensmaia
(2020)
Neural population dynamics in motor cortex are different for reach and grasp
eLife 9:e58848.
https://doi.org/10.7554/eLife.58848

Share this article

https://doi.org/10.7554/eLife.58848

Further reading

    1. Neuroscience
    Proloy Das, Mingjian He, Patrick L Purdon
    Tools and Resources

    Modern neurophysiological recordings are performed using multichannel sensor arrays that are able to record activity in an increasingly high number of channels numbering in the 100s to 1000s. Often, underlying lower-dimensional patterns of activity are responsible for the observed dynamics, but these representations are difficult to reliably identify using existing methods that attempt to summarize multivariate relationships in a post hoc manner from univariate analyses or using current blind source separation methods. While such methods can reveal appealing patterns of activity, determining the number of components to include, assessing their statistical significance, and interpreting them requires extensive manual intervention and subjective judgment in practice. These difficulties with component selection and interpretation occur in large part because these methods lack a generative model for the underlying spatio-temporal dynamics. Here, we describe a novel component analysis method anchored by a generative model where each source is described by a bio-physically inspired state-space representation. The parameters governing this representation readily capture the oscillatory temporal dynamics of the components, so we refer to it as oscillation component analysis. These parameters – the oscillatory properties, the component mixing weights at the sensors, and the number of oscillations – all are inferred in a data-driven fashion within a Bayesian framework employing an instance of the expectation maximization algorithm. We analyze high-dimensional electroencephalography and magnetoencephalography recordings from human studies to illustrate the potential utility of this method for neuroscience data.

    1. Neuroscience
    Sihan Yang, Anastasia Kiyonaga
    Insight

    A neural signature of serial dependence has been found, which mirrors the attractive bias of visual information seen in behavioral experiments.