Abstract

Chronic ethanol consumption is a leading cause of mortality worldwide, with higher risks to develop pulmonary infections, including Aspergillus infections. Mechanisms underlying increased susceptibility to infections are poorly understood. Chronic ethanol consumption induced increased mortality rates, higher Aspergillus fumigatus burden and reduced neutrophil recruitment into the airways. Intravital microscopy showed decrease in leukocyte adhesion and rolling after ethanol consumption. Moreover, downregulated neutrophil activation and increased levels of serum CXCL1 in ethanol-fed mice induced internalization of CXCR2 receptors in circulating neutrophils. Bone marrow-derived neutrophils from ethanol-fed mice showed lower fungal clearance and defective reactive oxygen species production. Taken together, results showed that ethanol affects activation, recruitment, phagocytosis and killing functions of neutrophils, causing susceptibility to pulmonary A. fumigatus infection. This study establishes a new paradigm in innate immune response in chronic ethanol consumers.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Nathalia Luisa Sousa de Oliveira Malacco

    Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
    For correspondence
    nathalialuisa2@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  2. Jessica Amanda Marques Souza

    Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  3. Flavia Rayssa Braga Martins

    Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  4. Milene Alvarenga Rachid

    Pathology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  5. Janaina Aparecida Simplicio

    Psychiatric Nursing and Human Sciences, Universidade de São Paulo, Ribeirão Preto, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  6. Carlos Renato Tirapelli

    Psychiatric Nursing and Human Sciences, Universidade de São Paulo, Ribeirão Preto, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  7. Adriano de Paula Sabino

    Clinical and Toxicological Analysis, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  8. Celso Martins Queiroz-Junior

    Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  9. Grazielle Ribeiro Goes

    Biology, Universidade do Estado de Minas Gerais, Divinópolis, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  10. Leda Quercia Vieira

    Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  11. Danielle Glória Souza

    Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  12. Vanessa Pinho

    Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  13. Mauro Martins Teixeira

    Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  14. Frederico Marianetti Soriani

    Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
    For correspondence
    fredsori@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4720-6746

Funding

Fundação de Amparo à Pesquisa do Estado de Minas Gerais (APQ-01756-10,APQ-02198-14 and APQ-03950-17;)

  • Jessica Amanda Marques Souza
  • Leda Quercia Vieira
  • Danielle Glória Souza
  • Vanessa Pinho
  • Mauro Martins Teixeira
  • Frederico Marianetti Soriani

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (001)

  • Nathalia Luisa Sousa de Oliveira Malacco
  • Jessica Amanda Marques Souza

Conselho Nacional de Desenvolvimento Científico e Tecnológico (474528-2012- 0 and 483184-2011-0)

  • Frederico Marianetti Soriani

Instituto Nacional de Ciência e Tecnologia em Dengue e Interações Microrganismo-Hospedeiro

  • Nathalia Luisa Sousa de Oliveira Malacco
  • Jessica Amanda Marques Souza
  • Flavia Rayssa Braga Martins
  • Leda Quercia Vieira
  • Danielle Glória Souza
  • Vanessa Pinho
  • Mauro Martins Teixeira
  • Frederico Marianetti Soriani

Universidade Federal de Minas Gerais (001)

  • Nathalia Luisa Sousa de Oliveira Malacco
  • Jessica Amanda Marques Souza
  • Flavia Rayssa Braga Martins
  • Milene Alvarenga Rachid
  • Celso Martins Queiroz-Junior
  • Grazielle Ribeiro Goes
  • Leda Quercia Vieira
  • Danielle Glória Souza
  • Vanessa Pinho
  • Mauro Martins Teixeira
  • Frederico Marianetti Soriani

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Frank L van de Veerdonk, Radboud University Medical Center, Netherlands

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations of the CONCEA (Conselho Nacional de Controle de Experimentação Animal) from Brazil. All animal experiments received prior approval from the Animal Ethics Committee (CEUA) of Universidade Federal de Minas Gerais (UFMG), Brazil (Protocol number: 4/2015).

Version history

  1. Received: May 20, 2020
  2. Accepted: July 22, 2020
  3. Accepted Manuscript published: July 23, 2020 (version 1)
  4. Version of Record published: August 3, 2020 (version 2)

Copyright

© 2020, Malacco et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,761
    views
  • 253
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nathalia Luisa Sousa de Oliveira Malacco
  2. Jessica Amanda Marques Souza
  3. Flavia Rayssa Braga Martins
  4. Milene Alvarenga Rachid
  5. Janaina Aparecida Simplicio
  6. Carlos Renato Tirapelli
  7. Adriano de Paula Sabino
  8. Celso Martins Queiroz-Junior
  9. Grazielle Ribeiro Goes
  10. Leda Quercia Vieira
  11. Danielle Glória Souza
  12. Vanessa Pinho
  13. Mauro Martins Teixeira
  14. Frederico Marianetti Soriani
(2020)
Chronic ethanol consumption compromises neutrophil function in acute pulmonary Aspergillus fumigatus infection
eLife 9:e58855.
https://doi.org/10.7554/eLife.58855

Share this article

https://doi.org/10.7554/eLife.58855

Further reading

    1. Evolutionary Biology
    2. Immunology and Inflammation
    Mark S Lee, Peter J Tuohy ... Michael S Kuhns
    Research Advance

    CD4+ T cell activation is driven by five-module receptor complexes. The T cell receptor (TCR) is the receptor module that binds composite surfaces of peptide antigens embedded within MHCII molecules (pMHCII). It associates with three signaling modules (CD3γε, CD3δε, and CD3ζζ) to form TCR-CD3 complexes. CD4 is the coreceptor module. It reciprocally associates with TCR-CD3-pMHCII assemblies on the outside of a CD4+ T cells and with the Src kinase, LCK, on the inside. Previously, we reported that the CD4 transmembrane GGXXG and cytoplasmic juxtamembrane (C/F)CV+C motifs found in eutherian (placental mammal) CD4 have constituent residues that evolved under purifying selection (Lee et al., 2022). Expressing mutants of these motifs together in T cell hybridomas increased CD4-LCK association but reduced CD3ζ, ZAP70, and PLCγ1 phosphorylation levels, as well as IL-2 production, in response to agonist pMHCII. Because these mutants preferentially localized CD4-LCK pairs to non-raft membrane fractions, one explanation for our results was that they impaired proximal signaling by sequestering LCK away from TCR-CD3. An alternative hypothesis is that the mutations directly impacted signaling because the motifs normally play an LCK-independent role in signaling. The goal of this study was to discriminate between these possibilities. Using T cell hybridomas, our results indicate that: intracellular CD4-LCK interactions are not necessary for pMHCII-specific signal initiation; the GGXXG and (C/F)CV+C motifs are key determinants of CD4-mediated pMHCII-specific signal amplification; the GGXXG and (C/F)CV+C motifs exert their functions independently of direct CD4-LCK association. These data provide a mechanistic explanation for why residues within these motifs are under purifying selection in jawed vertebrates. The results are also important to consider for biomimetic engineering of synthetic receptors.

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Jean-David Larouche, Céline M Laumont ... Claude Perreault
    Research Article

    Transposable elements (TEs) are repetitive sequences representing ~45% of the human and mouse genomes and are highly expressed by medullary thymic epithelial cells (mTECs). In this study, we investigated the role of TEs on T-cell development in the thymus. We performed multiomic analyses of TEs in human and mouse thymic cells to elucidate their role in T-cell development. We report that TE expression in the human thymus is high and shows extensive age- and cell lineage-related variations. TE expression correlates with multiple transcription factors in all cell types of the human thymus. Two cell types express particularly broad TE repertoires: mTECs and plasmacytoid dendritic cells (pDCs). In mTECs, transcriptomic data suggest that TEs interact with transcription factors essential for mTEC development and function (e.g., PAX1 and REL), and immunopeptidomic data showed that TEs generate MHC-I-associated peptides implicated in thymocyte education. Notably, AIRE, FEZF2, and CHD4 regulate small yet non-redundant sets of TEs in murine mTECs. Human thymic pDCs homogenously express large numbers of TEs that likely form dsRNA, which can activate innate immune receptors, potentially explaining why thymic pDCs constitutively secrete IFN ɑ/β. This study highlights the diversity of interactions between TEs and the adaptive immune system. TEs are genetic parasites, and the two thymic cell types most affected by TEs (mTEcs and pDCs) are essential to establishing central T-cell tolerance. Therefore, we propose that orchestrating TE expression in thymic cells is critical to prevent autoimmunity in vertebrates.