Abstract

Chronic ethanol consumption is a leading cause of mortality worldwide, with higher risks to develop pulmonary infections, including Aspergillus infections. Mechanisms underlying increased susceptibility to infections are poorly understood. Chronic ethanol consumption induced increased mortality rates, higher Aspergillus fumigatus burden and reduced neutrophil recruitment into the airways. Intravital microscopy showed decrease in leukocyte adhesion and rolling after ethanol consumption. Moreover, downregulated neutrophil activation and increased levels of serum CXCL1 in ethanol-fed mice induced internalization of CXCR2 receptors in circulating neutrophils. Bone marrow-derived neutrophils from ethanol-fed mice showed lower fungal clearance and defective reactive oxygen species production. Taken together, results showed that ethanol affects activation, recruitment, phagocytosis and killing functions of neutrophils, causing susceptibility to pulmonary A. fumigatus infection. This study establishes a new paradigm in innate immune response in chronic ethanol consumers.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Nathalia Luisa Sousa de Oliveira Malacco

    Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
    For correspondence
    nathalialuisa2@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  2. Jessica Amanda Marques Souza

    Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  3. Flavia Rayssa Braga Martins

    Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  4. Milene Alvarenga Rachid

    Pathology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  5. Janaina Aparecida Simplicio

    Psychiatric Nursing and Human Sciences, Universidade de São Paulo, Ribeirão Preto, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  6. Carlos Renato Tirapelli

    Psychiatric Nursing and Human Sciences, Universidade de São Paulo, Ribeirão Preto, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  7. Adriano de Paula Sabino

    Clinical and Toxicological Analysis, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  8. Celso Martins Queiroz-Junior

    Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  9. Grazielle Ribeiro Goes

    Biology, Universidade do Estado de Minas Gerais, Divinópolis, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  10. Leda Quercia Vieira

    Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  11. Danielle Glória Souza

    Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  12. Vanessa Pinho

    Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  13. Mauro Martins Teixeira

    Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  14. Frederico Marianetti Soriani

    Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
    For correspondence
    fredsori@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4720-6746

Funding

Fundação de Amparo à Pesquisa do Estado de Minas Gerais (APQ-01756-10,APQ-02198-14 and APQ-03950-17;)

  • Jessica Amanda Marques Souza
  • Leda Quercia Vieira
  • Danielle Glória Souza
  • Vanessa Pinho
  • Mauro Martins Teixeira
  • Frederico Marianetti Soriani

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (001)

  • Nathalia Luisa Sousa de Oliveira Malacco
  • Jessica Amanda Marques Souza

Conselho Nacional de Desenvolvimento Científico e Tecnológico (474528-2012- 0 and 483184-2011-0)

  • Frederico Marianetti Soriani

Instituto Nacional de Ciência e Tecnologia em Dengue e Interações Microrganismo-Hospedeiro

  • Nathalia Luisa Sousa de Oliveira Malacco
  • Jessica Amanda Marques Souza
  • Flavia Rayssa Braga Martins
  • Leda Quercia Vieira
  • Danielle Glória Souza
  • Vanessa Pinho
  • Mauro Martins Teixeira
  • Frederico Marianetti Soriani

Universidade Federal de Minas Gerais (001)

  • Nathalia Luisa Sousa de Oliveira Malacco
  • Jessica Amanda Marques Souza
  • Flavia Rayssa Braga Martins
  • Milene Alvarenga Rachid
  • Celso Martins Queiroz-Junior
  • Grazielle Ribeiro Goes
  • Leda Quercia Vieira
  • Danielle Glória Souza
  • Vanessa Pinho
  • Mauro Martins Teixeira
  • Frederico Marianetti Soriani

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Frank L van de Veerdonk, Radboud University Medical Center, Netherlands

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations of the CONCEA (Conselho Nacional de Controle de Experimentação Animal) from Brazil. All animal experiments received prior approval from the Animal Ethics Committee (CEUA) of Universidade Federal de Minas Gerais (UFMG), Brazil (Protocol number: 4/2015).

Version history

  1. Received: May 20, 2020
  2. Accepted: July 22, 2020
  3. Accepted Manuscript published: July 23, 2020 (version 1)
  4. Version of Record published: August 3, 2020 (version 2)

Copyright

© 2020, Malacco et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,815
    views
  • 254
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nathalia Luisa Sousa de Oliveira Malacco
  2. Jessica Amanda Marques Souza
  3. Flavia Rayssa Braga Martins
  4. Milene Alvarenga Rachid
  5. Janaina Aparecida Simplicio
  6. Carlos Renato Tirapelli
  7. Adriano de Paula Sabino
  8. Celso Martins Queiroz-Junior
  9. Grazielle Ribeiro Goes
  10. Leda Quercia Vieira
  11. Danielle Glória Souza
  12. Vanessa Pinho
  13. Mauro Martins Teixeira
  14. Frederico Marianetti Soriani
(2020)
Chronic ethanol consumption compromises neutrophil function in acute pulmonary Aspergillus fumigatus infection
eLife 9:e58855.
https://doi.org/10.7554/eLife.58855

Share this article

https://doi.org/10.7554/eLife.58855

Further reading

    1. Immunology and Inflammation
    Thomas Morgan Li, Victoria Zyulina ... Theresa T Lu
    Research Article Updated

    The autoimmune disease lupus erythematosus (lupus) is characterized by photosensitivity, where even ambient ultraviolet radiation (UVR) exposure can lead to development of inflammatory skin lesions. We have previously shown that Langerhans cells (LCs) limit keratinocyte apoptosis and photosensitivity via a disintegrin and metalloprotease 17 (ADAM17)-mediated release of epidermal growth factor receptor (EGFR) ligands and that LC ADAM17 sheddase activity is reduced in lupus. Here, we sought to understand how the lupus skin environment contributes to LC ADAM17 dysfunction and, in the process, differentiate between effects on LC ADAM17 sheddase function, LC ADAM17 expression, and LC numbers. We show through transcriptomic analysis a shared IFN-rich environment in non-lesional skin across human lupus and three murine models: MRL/lpr, B6.Sle1yaa, and imiquimod (IMQ) mice. IFN-I inhibits LC ADAM17 sheddase activity in murine and human LCs, and IFNAR blockade in lupus model mice restores LC ADAM17 sheddase activity, all without consistent effects on LC ADAM17 protein expression or LC numbers. Anti-IFNAR-mediated LC ADAM17 sheddase function restoration is associated with reduced photosensitive responses that are dependent on EGFR signaling and LC ADAM17. Reactive oxygen species (ROS) is a known mediator of ADAM17 activity; we show that UVR-induced LC ROS production is reduced in lupus model mice, restored by anti-IFNAR, and is cytoplasmic in origin. Our findings suggest that IFN-I promotes photosensitivity at least in part by inhibiting UVR-induced LC ADAM17 sheddase function and raise the possibility that anifrolumab ameliorates lupus skin disease in part by restoring this function. This work provides insight into IFN-I-mediated disease mechanisms, LC regulation, and a potential mechanism of action for anifrolumab in lupus.

    1. Immunology and Inflammation
    Xiaochan Xu, Bjarke Frost Nielsen, Kim Sneppen
    Research Article

    SARS-CoV-2 induces delayed type-I/III interferon production, allowing it to escape the early innate immune response. The delay has been attributed to a deficiency in the ability of cells to sense viral replication upon infection, which in turn hampers activation of the antiviral state in bystander cells. Here, we introduce a cellular automaton model to investigate the spatiotemporal spreading of viral infection as a function of virus and host-dependent parameters. The model suggests that the considerable person-to-person heterogeneity in SARS-CoV-2 infections is a consequence of high sensitivity to slight variations in biological parameters near a critical threshold. It further suggests that within-host viral proliferation can be curtailed by the presence of remarkably few cells that are primed for IFN production. Thus, the observed heterogeneity in defense readiness of cells reflects a remarkably cost-efficient strategy for protection.