Functional exploration of heterotrimeric kinesin-II in IFT and ciliary length control in Chlamydomonas

  1. Shufen Li
  2. Kirsty Y Wan
  3. Wei Chen
  4. Hui Tao
  5. Xin Liang  Is a corresponding author
  6. Junmin Pan  Is a corresponding author
  1. Tsinghua University, China
  2. University of Exeter, United Kingdom

Abstract

Heterodimeric motor organization of kinesin-II is essential for its function in anterograde IFT in ciliogenesis. However, the underlying mechanism is not well understood. In addition, the anterograde IFT velocity varies significantly in different organisms, but how this velocity affects ciliary length is not clear. We show that in Chlamydomonas motors are only stable as heterodimers in vivo, which is likely the key factor for the requirement of a heterodimer for IFT. Second, chimeric CrKinesin-II with human kinesin-II motor domains functioned in vitro and in vivo, leading to a ~2.8-fold reduced anterograde IFT velocity and a similar fold reduction in IFT injection rate that supposedly correlates with ciliary assembly activity. However, the ciliary length was only mildly reduced (~15%). Modelling analysis suggests a nonlinear scaling relationship between IFT velocity and ciliary length that can be accounted for by limitation of the motors and/or its ciliary cargoes, e.g. tubulin.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Part of the source data have been provided for Figure 1-4.

Article and author information

Author details

  1. Shufen Li

    School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    No competing interests declared.
  2. Kirsty Y Wan

    Living Systems Institute, University of Exeter, Exeter, United Kingdom
    Competing interests
    No competing interests declared.
  3. Wei Chen

    School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7454-3882
  4. Hui Tao

    School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    No competing interests declared.
  5. Xin Liang

    School of Life Sciences, Tsinghua University, Tsinghua, China
    For correspondence
    xinliang@tsinghua.edu.cn
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7915-8094
  6. Junmin Pan

    School of Life Sciences, Tsinghua University, Beijing, China
    For correspondence
    panjunmin@tsinghua.edu.cn
    Competing interests
    Junmin Pan, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1242-3791

Funding

Ministry of Science and Technology of the People's Republic of China (2017YFA0503500)

  • Junmin Pan

Ministry of Science and Technology of the People's Republic of China (2018YFA0902500)

  • Junmin Pan

National Natural Science Foundation of China (31991191)

  • Junmin Pan

National Natural Science Foundation of China (31671387)

  • Junmin Pan

National Natural Science Foundation of China (31972888)

  • Junmin Pan

National Natural Science Foundation of China (31922018)

  • Xin Liang

Springboard Award from the Academy of Medical Sciences and Global Challenges Research Fund Research Fund (SBF003\1160)

  • Kirsty Y Wan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,548
    views
  • 256
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shufen Li
  2. Kirsty Y Wan
  3. Wei Chen
  4. Hui Tao
  5. Xin Liang
  6. Junmin Pan
(2020)
Functional exploration of heterotrimeric kinesin-II in IFT and ciliary length control in Chlamydomonas
eLife 9:e58868.
https://doi.org/10.7554/eLife.58868

Share this article

https://doi.org/10.7554/eLife.58868

Further reading

    1. Cancer Biology
    2. Cell Biology
    Francesca Butera, Julia E Sero ... Chris Bakal
    Research Article

    The canonical NF-κB transcription factor RELA is a master regulator of immune and stress responses and is upregulated in PDAC tumours. In this study, we characterised previously unexplored endogenous RELA-GFP dynamics in PDAC cell lines through live single cell imaging. Our observations revealed that TNFα stimulation induces rapid, sustained, and non-oscillatory nuclear translocation of RELA. Through Bayesian analysis of single cell datasets with variation in nuclear RELA, we predicted that RELA heterogeneity in PDAC cell lines is dependent on F-actin dynamics. RNA-seq analysis identified distinct clusters of RELA-regulated gene expression in PDAC cells, including TNFα-induced RELA upregulation of the actin regulators NUAK2 and ARHGAP31. Further, siRNA-mediated depletion of ARHGAP31 and NUAK2 altered TNFα-stimulated nuclear RELA dynamics in PDAC cells, establishing a novel negative feedback loop that regulates RELA activation by TNFα. Additionally, we characterised the NF-κB pathway in PDAC cells, identifying how NF-κB/IκB proteins genetically and physically interact with RELA in the absence or presence of TNFα. Taken together, we provide computational and experimental support for interdependence between the F-actin network and the NF-κB pathway with RELA translocation dynamics in PDAC.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Birol Cabukusta, Shalom Borst Pauwels ... Jacques Neefjes
    Research Article

    Numerous lipids are heterogeneously distributed among organelles. Most lipid trafficking between organelles is achieved by a group of lipid transfer proteins (LTPs) that carry lipids using their hydrophobic cavities. The human genome encodes many intracellular LTPs responsible for lipid trafficking and the function of many LTPs in defining cellular lipid levels and distributions is unclear. Here, we created a gene knockout library targeting 90 intracellular LTPs and performed whole-cell lipidomics analysis. This analysis confirmed known lipid disturbances and identified new ones caused by the loss of LTPs. Among these, we found major sphingolipid imbalances in ORP9 and ORP11 knockout cells, two proteins of previously unknown function in sphingolipid metabolism. ORP9 and ORP11 form a heterodimer to localize at the ER-trans-Golgi membrane contact sites, where the dimer exchanges phosphatidylserine (PS) for phosphatidylinositol-4-phosphate (PI(4)P) between the two organelles. Consequently, loss of either protein causes phospholipid imbalances in the Golgi apparatus that result in lowered sphingomyelin synthesis at this organelle. Overall, our LTP knockout library toolbox identifies various proteins in control of cellular lipid levels, including the ORP9-ORP11 heterodimer, which exchanges PS and PI(4)P at the ER-Golgi membrane contact site as a critical step in sphingomyelin synthesis in the Golgi apparatus.