Recurrent evolution of high virulence in isolated populations of a DNA virus

  1. Tom Hill  Is a corresponding author
  2. Robert L Unckless
  1. University of Kansas, United States

Abstract

Hosts and viruses are constantly evolving in response to each other: as a host attempts to suppress a virus, the virus attempts to evade and suppress the host's immune system. Here we describe the recurrent evolution of a virulent strain of a DNA virus which infects multiple Drosophila species. Specifically, we identified two distinct viral types that differ 100-fold in viral titer in infected individuals, with similar differences observed in multiple species. Our analysis suggests that one of the viral types appears to have recurrently evolved at least 4 times in the past ~30,000 years, 3X in Arizona and once in another geographically distinct species. This recurrent evolution may be facilitated by an effective mutation rate which increases as each prior mutation increases viral titer and effective population size. The higher titer viral type suppresses the host immune system and an increased virulence compared to the low viral titer type.

Data availability

Sequencing data have been deposited on the NCBI SRA under the study accession: SRP187240Genomes used in this study are available at the following accessions:Drosophila innubila - GCF_004354385.1Drosophila innubila Nudivirus - GCF_004132165.1Drosophila azteca - GCA_005876895.1

The following data sets were generated
    1. Hill T
    2. Unckless RL
    (2020) Drosophila Sky Island data analysis
    Dryad Digital Repository, doi:10.5061/dryad.2fqz612mh.

Article and author information

Author details

  1. Tom Hill

    Molecular Biosciences, University of Kansas, Lawrence, United States
    For correspondence
    tom.hill@ku.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4661-6391
  2. Robert L Unckless

    Department of Molecular Biosciences, University of Kansas, Lawrence, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8586-7137

Funding

KU CMADP (P20 GM103638)

  • Tom Hill
  • Robert L Unckless

K-INBRE (P20 GM103418)

  • Tom Hill

National Institutes of Health (R00 GM114714)

  • Robert L Unckless

National Institutes of Health (R01 AI139154)

  • Robert L Unckless

National Science Foundation (DEB-1737824)

  • Tom Hill
  • Robert L Unckless

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Hill & Unckless

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,587
    views
  • 183
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tom Hill
  2. Robert L Unckless
(2020)
Recurrent evolution of high virulence in isolated populations of a DNA virus
eLife 9:e58931.
https://doi.org/10.7554/eLife.58931

Share this article

https://doi.org/10.7554/eLife.58931

Further reading

    1. Evolutionary Biology
    2. Genetics and Genomics
    Torsten Günther, Jacob Chisausky ... Cristina Valdiosera
    Research Article

    Cattle (Bos taurus) play an important role in the life of humans in the Iberian Peninsula not just as a food source but also in cultural events. When domestic cattle were first introduced to Iberia, wild aurochs (Bos primigenius) were still present, leaving ample opportunity for mating (whether intended by farmers or not). Using a temporal bioarchaeological dataset covering eight millennia, we trace gene flow between the two groups. Our results show frequent hybridisation during the Neolithic and Chalcolithic, likely reflecting a mix of hunting and herding or relatively unmanaged herds, with mostly male aurochs and female domestic cattle involved. This is supported by isotopic evidence consistent with ecological niche sharing, with only a few domestic cattle possibly being managed. The proportion of aurochs ancestry in domestic cattle remains relatively constant from about 4000 years ago, probably due to herd management and selection against first generation hybrids, coinciding with other cultural transitions. The constant level of wild ancestry (~20%) continues into modern Western European breeds including Iberian cattle selected for aggressiveness and fighting ability. This study illuminates the genomic impact of human actions and wild introgression in the establishment of cattle as one of the most important domestic species today.

    1. Evolutionary Biology
    2. Genetics and Genomics
    James Boocock, Noah Alexander ... Leonid Kruglyak
    Research Article

    Expression quantitative trait loci (eQTLs) provide a key bridge between noncoding DNA sequence variants and organismal traits. The effects of eQTLs can differ among tissues, cell types, and cellular states, but these differences are obscured by gene expression measurements in bulk populations. We developed a one-pot approach to map eQTLs in Saccharomyces cerevisiae by single-cell RNA sequencing (scRNA-seq) and applied it to over 100,000 single cells from three crosses. We used scRNA-seq data to genotype each cell, measure gene expression, and classify the cells by cell-cycle stage. We mapped thousands of local and distant eQTLs and identified interactions between eQTL effects and cell-cycle stages. We took advantage of single-cell expression information to identify hundreds of genes with allele-specific effects on expression noise. We used cell-cycle stage classification to map 20 loci that influence cell-cycle progression. One of these loci influenced the expression of genes involved in the mating response. We showed that the effects of this locus arise from a common variant (W82R) in the gene GPA1, which encodes a signaling protein that negatively regulates the mating pathway. The 82R allele increases mating efficiency at the cost of slower cell-cycle progression and is associated with a higher rate of outcrossing in nature. Our results provide a more granular picture of the effects of genetic variants on gene expression and downstream traits.