Recurrent evolution of high virulence in isolated populations of a DNA virus

  1. Tom Hill  Is a corresponding author
  2. Robert L Unckless
  1. University of Kansas, United States

Abstract

Hosts and viruses are constantly evolving in response to each other: as a host attempts to suppress a virus, the virus attempts to evade and suppress the host's immune system. Here we describe the recurrent evolution of a virulent strain of a DNA virus which infects multiple Drosophila species. Specifically, we identified two distinct viral types that differ 100-fold in viral titer in infected individuals, with similar differences observed in multiple species. Our analysis suggests that one of the viral types appears to have recurrently evolved at least 4 times in the past ~30,000 years, 3X in Arizona and once in another geographically distinct species. This recurrent evolution may be facilitated by an effective mutation rate which increases as each prior mutation increases viral titer and effective population size. The higher titer viral type suppresses the host immune system and an increased virulence compared to the low viral titer type.

Data availability

Sequencing data have been deposited on the NCBI SRA under the study accession: SRP187240Genomes used in this study are available at the following accessions:Drosophila innubila - GCF_004354385.1Drosophila innubila Nudivirus - GCF_004132165.1Drosophila azteca - GCA_005876895.1

The following data sets were generated
    1. Hill T
    2. Unckless RL
    (2020) Drosophila Sky Island data analysis
    Dryad Digital Repository, doi:10.5061/dryad.2fqz612mh.

Article and author information

Author details

  1. Tom Hill

    Molecular Biosciences, University of Kansas, Lawrence, United States
    For correspondence
    tom.hill@ku.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4661-6391
  2. Robert L Unckless

    Department of Molecular Biosciences, University of Kansas, Lawrence, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8586-7137

Funding

KU CMADP (P20 GM103638)

  • Tom Hill
  • Robert L Unckless

K-INBRE (P20 GM103418)

  • Tom Hill

National Institutes of Health (R00 GM114714)

  • Robert L Unckless

National Institutes of Health (R01 AI139154)

  • Robert L Unckless

National Science Foundation (DEB-1737824)

  • Tom Hill
  • Robert L Unckless

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Hill & Unckless

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,567
    views
  • 182
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tom Hill
  2. Robert L Unckless
(2020)
Recurrent evolution of high virulence in isolated populations of a DNA virus
eLife 9:e58931.
https://doi.org/10.7554/eLife.58931

Share this article

https://doi.org/10.7554/eLife.58931

Further reading

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Pierre Barrat-Charlaix, Richard A Neher
    Research Article

    As pathogens spread in a population of hosts, immunity is built up, and the pool of susceptible individuals are depleted. This generates selective pressure, to which many human RNA viruses, such as influenza virus or SARS-CoV-2, respond with rapid antigenic evolution and frequent emergence of immune evasive variants. However, the host’s immune systems adapt, and older immune responses wane, such that escape variants only enjoy a growth advantage for a limited time. If variant growth dynamics and reshaping of host-immunity operate on comparable time scales, viral adaptation is determined by eco-evolutionary interactions that are not captured by models of rapid evolution in a fixed environment. Here, we use a Susceptible/Infected model to describe the interaction between an evolving viral population in a dynamic but immunologically diverse host population. We show that depending on strain cross-immunity, heterogeneity of the host population, and durability of immune responses, escape variants initially grow exponentially, but lose their growth advantage before reaching high frequencies. Their subsequent dynamics follows an anomalous random walk determined by future escape variants and results in variant trajectories that are unpredictable. This model can explain the apparent contradiction between the clearly adaptive nature of antigenic evolution and the quasi-neutral dynamics of high-frequency variants observed for influenza viruses.

    1. Ecology
    2. Evolutionary Biology
    Rebecca D Tarvin, Jeffrey L Coleman ... Richard W Fitch
    Research Article

    Understanding the origins of novel, complex phenotypes is a major goal in evolutionary biology. Poison frogs of the family Dendrobatidae have evolved the novel ability to acquire alkaloids from their diet for chemical defense at least three times. However, taxon sampling for alkaloids has been biased towards colorful species, without similar attention paid to inconspicuous ones that are often assumed to be undefended. As a result, our understanding of how chemical defense evolved in this group is incomplete. Here, we provide new data showing that, in contrast to previous studies, species from each undefended poison frog clade have measurable yet low amounts of alkaloids. We confirm that undefended dendrobatids regularly consume mites and ants, which are known sources of alkaloids. Thus, our data suggest that diet is insufficient to explain the defended phenotype. Our data support the existence of a phenotypic intermediate between toxin consumption and sequestration — passive accumulation — that differs from sequestration in that it involves no derived forms of transport and storage mechanisms yet results in low levels of toxin accumulation. We discuss the concept of passive accumulation and its potential role in the origin of chemical defenses in poison frogs and other toxin-sequestering organisms. In light of ideas from pharmacokinetics, we incorporate new and old data from poison frogs into an evolutionary model that could help explain the origins of acquired chemical defenses in animals and provide insight into the molecular processes that govern the fate of ingested toxins.