Microtubules originate asymmetrically at the somatic Golgi and are guided via Kinesin2 to maintain polarity in neurons

  1. Amrita Mukherjee
  2. Paul S Brooks
  3. Fred Bernard
  4. Antoine Guichet
  5. Paul T Conduit  Is a corresponding author
  1. University of Cambridge, United Kingdom
  2. Institut Jacques Monod, CNRS, UMR 7592, Paris Diderot University, France

Abstract

Neurons contain polarised microtubule arrays essential for neuronal function. How microtubule nucleation and polarity are regulated within neurons remains unclear. We show that γ-tubulin localises asymmetrically to the somatic Golgi within Drosophila neurons. Microtubules originate from the Golgi with an initial growth preference towards the axon. Their growing plus ends also turn towards and into the axon, adding to the plus-end-out microtubule pool. Any plus ends that reach a dendrite, however, do not readily enter, maintaining minus-end-out polarity. Both turning towards the axon and exclusion from dendrites depend on Kinesin-2, a plus-end-associated motor that guides growing plus ends along adjacent microtubules. We propose that Kinesin-2 engages with a polarised microtubule network within the soma to guide growing microtubules towards the axon; while at dendrite entry sites engagement with microtubules of opposite polarity generates a backward stalling force that prevents entry into dendrites and thus maintains minus-end-out polarity within proximal dendrites.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figure 6 and 7.

Article and author information

Author details

  1. Amrita Mukherjee

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Paul S Brooks

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Fred Bernard

    Polarity and Morphogenesis Lab, Institut Jacques Monod, CNRS, UMR 7592, Paris Diderot University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7919-253X
  4. Antoine Guichet

    Polarity and Morphogenesis Lab, Institut Jacques Monod, CNRS, UMR 7592, Paris Diderot University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7216-1944
  5. Paul T Conduit

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    ptc29@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7822-1191

Funding

Wellcome (105653/Z/14/Z)

  • Amrita Mukherjee
  • Paul S Brooks
  • Paul T Conduit

Isaac Newton Trust (18.23(p))

  • Amrita Mukherjee
  • Paul T Conduit

Association pour la Recherche sur le Cancer (PJA 20181208148)

  • Fred Bernard
  • Antoine Guichet

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Yukiko M Yamashita, University of Michigan, United States

Version history

  1. Received: May 15, 2020
  2. Accepted: July 12, 2020
  3. Accepted Manuscript published: July 13, 2020 (version 1)
  4. Version of Record published: July 31, 2020 (version 2)
  5. Version of Record updated: August 3, 2020 (version 3)

Copyright

© 2020, Mukherjee et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,020
    views
  • 451
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Amrita Mukherjee
  2. Paul S Brooks
  3. Fred Bernard
  4. Antoine Guichet
  5. Paul T Conduit
(2020)
Microtubules originate asymmetrically at the somatic Golgi and are guided via Kinesin2 to maintain polarity in neurons
eLife 9:e58943.
https://doi.org/10.7554/eLife.58943

Share this article

https://doi.org/10.7554/eLife.58943

Further reading

    1. Cancer Biology
    2. Cell Biology
    Camille Dantzer, Justine Vaché ... Violaine Moreau
    Research Article

    Immune checkpoint inhibitors have produced encouraging results in cancer patients. However, the majority of ß-catenin-mutated tumors have been described as lacking immune infiltrates and resistant to immunotherapy. The mechanisms by which oncogenic ß-catenin affects immune surveillance remain unclear. Herein, we highlighted the involvement of ß-catenin in the regulation of the exosomal pathway and, by extension, in immune/cancer cell communication in hepatocellular carcinoma (HCC). We showed that mutated ß-catenin represses expression of SDC4 and RAB27A, two main actors in exosome biogenesis, in both liver cancer cell lines and HCC patient samples. Using nanoparticle tracking analysis and live-cell imaging, we further demonstrated that activated ß-catenin represses exosome release. Then, we demonstrated in 3D spheroid models that activation of β-catenin promotes a decrease in immune cell infiltration through a defect in exosome secretion. Taken together, our results provide the first evidence that oncogenic ß-catenin plays a key role in exosome biogenesis. Our study gives new insight into the impact of ß-catenin mutations on tumor microenvironment remodeling, which could lead to the development of new strategies to enhance immunotherapeutic response.

    1. Cell Biology
    Zhongyun Xie, Yongping Chai ... Wei Li
    Research Article

    Asymmetric cell divisions (ACDs) generate two daughter cells with identical genetic information but distinct cell fates through epigenetic mechanisms. However, the process of partitioning different epigenetic information into daughter cells remains unclear. Here, we demonstrate that the nucleosome remodeling and deacetylase (NuRD) complex is asymmetrically segregated into the surviving daughter cell rather than the apoptotic one during ACDs in Caenorhabditis elegans. The absence of NuRD triggers apoptosis via the EGL-1-CED-9-CED-4-CED-3 pathway, while an ectopic gain of NuRD enables apoptotic daughter cells to survive. We identify the vacuolar H+–adenosine triphosphatase (V-ATPase) complex as a crucial regulator of NuRD’s asymmetric segregation. V-ATPase interacts with NuRD and is asymmetrically segregated into the surviving daughter cell. Inhibition of V-ATPase disrupts cytosolic pH asymmetry and NuRD asymmetry. We suggest that asymmetric segregation of V-ATPase may cause distinct acidification levels in the two daughter cells, enabling asymmetric epigenetic inheritance that specifies their respective life-versus-death fates.