Abstract

The coordination of cell proliferation and migration in growing tissues is crucial in development and regeneration but remains poorly understood. Here, we find that, while expanding with an edge speed independent of initial conditions, millimeter-scale epithelial monolayers exhibit internal patterns of proliferation and migration that depend not on the current but on the initial tissue size, indicating memory effects. Specifically, the core of large tissues becomes very dense, almost quiescent, and ceases cell-cycle progression. In contrast, initially-smaller tissues develop a local minimum of cell density and a tissue-spanning vortex. To explain vortex formation, we propose an active polar fluid model with a feedback between cell polarization and tissue flow. Taken together, our findings suggest that expanding epithelia decouple their internal and edge regions, which enables robust expansion dynamics despite the presence of size and history-dependent patterns in the tissue interior.

Data availability

Representative raw datasets for each Figure are available at Zenodo DOI: 10.5281/zenodo.3858845Full raw dataset is hundreds of gigabytes due to the video data and can be provided upon request. Key analysis code provided at our github repository: Github DOI: 10.5281/zenodo.3861843

Article and author information

Author details

  1. Matthew A Heinrich

    Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ricard Alert

    Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1885-9177
  3. Julienne M LaChance

    Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Tom J Zajdel

    Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Andrej Košmrlj

    Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6137-9200
  6. Daniel J Cohen

    Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, United States
    For correspondence
    danielcohen@princeton.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5819-1135

Funding

National Institutes of Health (1 R35GM133574-01)

  • Daniel J Cohen

Human Frontiers of Science Program (LT000475/2018-C)

  • Ricard Alert

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Heinrich et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,049
    views
  • 761
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew A Heinrich
  2. Ricard Alert
  3. Julienne M LaChance
  4. Tom J Zajdel
  5. Andrej Košmrlj
  6. Daniel J Cohen
(2020)
Size-dependent patterns of cell proliferation and migration in freely-expanding epithelia
eLife 9:e58945.
https://doi.org/10.7554/eLife.58945

Share this article

https://doi.org/10.7554/eLife.58945

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Ignacy Czajewski, Bijayalaxmi Swain ... Daan MF van Aalten
    Research Article

    O-GlcNAcylation is an essential intracellular protein modification mediated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Recently, missense mutations in OGT have been linked to intellectual disability, indicating that this modification is important for the development and functioning of the nervous system. However, the processes that are most sensitive to perturbations in O-GlcNAcylation remain to be identified. Here, we uncover quantifiable phenotypes in the fruit fly Drosophila melanogaster carrying a patient-derived OGT mutation in the catalytic domain. Hypo-O-GlcNAcylation leads to defects in synaptogenesis and reduced sleep stability. Both these phenotypes can be partially rescued by genetically or chemically targeting OGA, suggesting that a balance of OGT/OGA activity is required for normal neuronal development and function.

    1. Developmental Biology
    Martina Jabloñski, Guillermina M Luque ... Mariano G Buffone
    Research Article

    Mammalian sperm delve into the female reproductive tract to fertilize the female gamete. The available information about how sperm regulate their motility during the final journey to the fertilization site is extremely limited. In this work, we investigated the structural and functional changes in the sperm flagellum after acrosomal exocytosis (AE) and during the interaction with the eggs. The evidence demonstrates that the double helix actin network surrounding the mitochondrial sheath of the midpiece undergoes structural changes prior to the motility cessation. This structural modification is accompanied by a decrease in diameter of the midpiece and is driven by intracellular calcium changes that occur concomitant with a reorganization of the actin helicoidal cortex. Midpiece contraction occurs in a subset of cells that undergo AE, and live-cell imaging during in vitro fertilization showed that the midpiece contraction is required for motility cessation after fusion is initiated. These findings provide the first evidence of the F-actin network’s role in regulating sperm motility, adapting its function to meet specific cellular requirements during fertilization, and highlighting the broader significance of understanding sperm motility.