Probing the ionotropic activity of glutamate GluD2 receptor in HEK cells with genetically-engineered photopharmacology

  1. Damien Lemoine
  2. Sarah Mondoloni
  3. Jérome Tange
  4. Bertrand Lambolez
  5. Philippe Faure
  6. Antoine Taly
  7. Ludovic Tricoire  Is a corresponding author
  8. Alexandre Mourot  Is a corresponding author
  1. Sorbonne Université, INSERM, CNRS, France
  2. Institut de Biologie Physico-chimique, France

Abstract

Glutamate delta (GluD) receptors belong to the ionotropic glutamate receptor family, yet they don't bind glutamate and are considered orphan. Progress in defining the ion channel function of GluDs in neurons has been hindered by a lack of pharmacological tools. Here we used a chemo-genetic approach to engineer specific and photo-reversible pharmacology in GluD2 receptor. We incorporated a cysteine mutation in the cavity located above the putative ion channel pore, for site-specific conjugation with a photoswitchable pore blocker. In the constitutively-open GluD2 Lurcher mutant, current could be rapidly and reversibly decreased with light. We then transposed the cysteine mutation to the native receptor, to demonstrate with high pharmacological specificity that metabotropic glutamate receptor signaling triggers opening of GluD2. Our results assess the functional relevance of GluD2 ion channel and introduce an optogenetic tool that will provide a novel and powerful means for probing GluD2 ionotropic contribution to neuronal physiology.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data have been provided for all the figures.

Article and author information

Author details

  1. Damien Lemoine

    Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, INSERM, CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Sarah Mondoloni

    Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, INSERM, CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Jérome Tange

    Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, INSERM, CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Bertrand Lambolez

    Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, INSERM, CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0653-480X
  5. Philippe Faure

    Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, INSERM, CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3573-4971
  6. Antoine Taly

    Laboratoire de Biochimie Théorique, Institut de Biologie Physico-chimique, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5109-0091
  7. Ludovic Tricoire

    Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, INSERM, CNRS, Paris, France
    For correspondence
    ludovic.tricoire@upmc.fr
    Competing interests
    The authors declare that no competing interests exist.
  8. Alexandre Mourot

    Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, INSERM, CNRS, Paris, France
    For correspondence
    alexandre.mourot@inserm.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8839-7481

Funding

Agence Nationale de la Recherche (ANR-16-CE16-0014-01)

  • Ludovic Tricoire

Fondation pour la Recherche Médicale (FRM EQU201903007961)

  • Philippe Faure

LABEX Dynamo

  • Antoine Taly

Agence Nationale de la Recherche (ANR-11-LABX-0011)

  • Antoine Taly

LABEX Biopsy

  • Damien Lemoine

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Lemoine et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,201
    views
  • 288
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.59026

Further reading

    1. Biochemistry and Chemical Biology
    Meina He, Yongxin Tao ... Wenli Chen
    Research Article

    Copper is an essential enzyme cofactor in bacteria, but excess copper is highly toxic. Bacteria can cope with copper stress by increasing copper resistance and initiating chemorepellent response. However, it remains unclear how bacteria coordinate chemotaxis and resistance to copper. By screening proteins that interacted with the chemotaxis kinase CheA, we identified a copper-binding repressor CsoR that interacted with CheA in Pseudomonas putida. CsoR interacted with the HPT (P1), Dimer (P3), and HATPase_c (P4) domains of CheA and inhibited CheA autophosphorylation, resulting in decreased chemotaxis. The copper-binding of CsoR weakened its interaction with CheA, which relieved the inhibition of chemotaxis by CsoR. In addition, CsoR bound to the promoter of copper-resistance genes to inhibit gene expression, and copper-binding released CsoR from the promoter, leading to increased gene expression and copper resistance. P. putida cells exhibited a chemorepellent response to copper in a CheA-dependent manner, and CsoR inhibited the chemorepellent response to copper. Besides, the CheA-CsoR interaction also existed in proteins from several other bacterial species. Our results revealed a mechanism by which bacteria coordinately regulated chemotaxis and resistance to copper by CsoR.

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Jiale Zhou, Ding Zhao ... Zhanjun Li
    Research Article

    5-Methylcytosine (m5C) is one of the posttranscriptional modifications in mRNA and is involved in the pathogenesis of various diseases. However, the capacity of existing assays for accurately and comprehensively transcriptome-wide m5C mapping still needs improvement. Here, we develop a detection method named DRAM (deaminase and reader protein assisted RNA methylation analysis), in which deaminases (APOBEC1 and TadA-8e) are fused with m5C reader proteins (ALYREF and YBX1) to identify the m5C sites through deamination events neighboring the methylation sites. This antibody-free and bisulfite-free approach provides transcriptome-wide editing regions which are highly overlapped with the publicly available bisulfite-sequencing (BS-seq) datasets and allows for a more stable and comprehensive identification of the m5C loci. In addition, DRAM system even supports ultralow input RNA (10 ng). We anticipate that the DRAM system could pave the way for uncovering further biological functions of m5C modifications.