GAS5 protects against osteoporosis by targeting UPF1/SMAD7 axis in osteoblast differentiation

  1. Ming Li
  2. Zhongyu Xie
  3. Jinteng Li
  4. Jiajie Lin
  5. Guan Zheng
  6. Wenjie Liu
  7. Su'an Tang
  8. Shuizhong Cen
  9. Guiwen Ye
  10. Zhaofeng Li
  11. Wenhui Yu
  12. Peng Wang  Is a corresponding author
  13. Yanfeng Wu  Is a corresponding author
  14. Huiyong Shen  Is a corresponding author
  1. Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China
  2. The Eighth Affiliated Hospital, Sun Yat-sen University, China
  3. Zhujiang Hospital, Southern Medical University, China

Abstract

Osteoporosis is a common systemic skeletal disorder resulting in bone fragility and increased fracture risk. It is still necessary to explore its detailed mechanisms and identify novel targets for the treatment of osteoporosis. Previously, we found that a lncRNA named GAS5 in human could negatively regulate the lipoblast/adipocyte differentiation. However, it is still unclear whether GAS5 affects osteoblast differentiation and whether GAS5 is associated with osteoporosis. Our current research found that GAS5 was decreased in the bones and BMSCs, a major origin of osteoblast, of osteoporosis patients. Mechanistically, GAS5 promotes the osteoblast differentiation by interacting with UPF1 to degrade SMAD7 mRNA. Moreover, a decreased bone mass and impaired bone repair ability were observed in Gas5 heterozygous mice, manifesting in osteoporosis. The systemic supplement of Gas5-overexpressing adenoviruses significantly ameliorated bone loss in an osteoporosis mouse model. In conclusion, GAS5 promotes osteoblast differentiation by targeting the UPF1/SMAD7 axis and protects against osteoporosis.

Data availability

The relevant data are available from Dryad (DOI: https://doi.org/10.5061/dryad.9cnp5hqfj). Primers of the analyzed genes (Supplementary Table 1), the siRNA sequences of the analyzed genes (Supplementary Table 2), characteristics of the study subjects (Supplementary Table 3) and Characteristics of the 15 healthy donors (Supplementary Table 4) can be found in the supplementary documents.

The following data sets were generated

Article and author information

Author details

  1. Ming Li

    Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Zhongyu Xie

    Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Jinteng Li

    Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Jiajie Lin

    Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Guan Zheng

    Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Wenjie Liu

    Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Su'an Tang

    Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Shuizhong Cen

    Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Guiwen Ye

    Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Zhaofeng Li

    Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Wenhui Yu

    Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Peng Wang

    Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
    For correspondence
    wangpengsmh@foxmail.com
    Competing interests
    The authors declare that no competing interests exist.
  13. Yanfeng Wu

    Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
    For correspondence
    wuyf@mail.sysu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  14. Huiyong Shen

    Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
    For correspondence
    shenhuiy@mail.sysu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7104-3049

Funding

National Natural Science Foundation of China (81971518,81672097,81871750,81702120)

  • Zhongyu Xie
  • Peng Wang
  • Yanfeng Wu
  • Huiyong Shen

Ken Realm R&D Program of Guangdong Province (2019B020236001)

  • Huiyong Shen

Fundamental Research Funds for the Central Universities (19ykpy01)

  • Zhongyu Xie

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of Eighth Affiliated Hospital of Sun Yat-sen University. All procedures involving animals were approved by the Animal Use and Care Committee of the Eighth Affiliated Hospital of Sun Yat-sen University (approval number: SYSU-IACUC-2018-B10325).

Human subjects: The study was approved by the ethics committee of the Eighth Affiliated Hospital of Sun Yat-sen University (approval number: 2018r010) and it was performed in strict accordance with the recommendations of ethics committee. After explaining in detail the possible risks and importance of the research, as well as informing methods of privacy protection, we obtained the informed consent and consent publish signatures of all patients or normal donors.

Reviewing Editor

  1. Cheryl Ackert-Bicknell, University of Colorado, United States

Publication history

  1. Received: May 19, 2020
  2. Accepted: September 30, 2020
  3. Accepted Manuscript published: October 2, 2020 (version 1)
  4. Version of Record published: November 3, 2020 (version 2)

Copyright

© 2020, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,041
    Page views
  • 197
    Downloads
  • 19
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ming Li
  2. Zhongyu Xie
  3. Jinteng Li
  4. Jiajie Lin
  5. Guan Zheng
  6. Wenjie Liu
  7. Su'an Tang
  8. Shuizhong Cen
  9. Guiwen Ye
  10. Zhaofeng Li
  11. Wenhui Yu
  12. Peng Wang
  13. Yanfeng Wu
  14. Huiyong Shen
(2020)
GAS5 protects against osteoporosis by targeting UPF1/SMAD7 axis in osteoblast differentiation
eLife 9:e59079.
https://doi.org/10.7554/eLife.59079

Further reading

    1. Cell Biology
    2. Cancer Biology
    Chelsea U Kidwell, Joseph R Casalini ... Minna Roh-Johnson
    Research Article Updated

    Recent studies reveal that lateral mitochondrial transfer, the movement of mitochondria from one cell to another, can affect cellular and tissue homeostasis. Most of what we know about mitochondrial transfer stems from bulk cell studies and have led to the paradigm that functional transferred mitochondria restore bioenergetics and revitalize cellular functions to recipient cells with damaged or non-functional mitochondrial networks. However, we show that mitochondrial transfer also occurs between cells with functioning endogenous mitochondrial networks, but the mechanisms underlying how transferred mitochondria can promote such sustained behavioral reprogramming remain unclear. We report that unexpectedly, transferred macrophage mitochondria are dysfunctional and accumulate reactive oxygen species in recipient cancer cells. We further discovered that reactive oxygen species accumulation activates ERK signaling, promoting cancer cell proliferation. Pro-tumorigenic macrophages exhibit fragmented mitochondrial networks, leading to higher rates of mitochondrial transfer to cancer cells. Finally, we observe that macrophage mitochondrial transfer promotes tumor cell proliferation in vivo. Collectively these results indicate that transferred macrophage mitochondria activate downstream signaling pathways in a ROS-dependent manner in cancer cells, and provide a model of how sustained behavioral reprogramming can be mediated by a relatively small amount of transferred mitochondria in vitro and in vivo.

    1. Cell Biology
    2. Developmental Biology
    Yalda Afshar, Feyiang Ma ... M Luisa Iruela-Arispe
    Research Article

    Environmental cues, such as physical forces and heterotypic cell interactions play a critical role in cell function, yet their collective contributions to transcriptional changes are unclear. Focusing on human endothelial cells, we performed broad individual sample analysis to identify transcriptional drifts associated with environmental changes that were independent of genetic background. Global gene expression profiling by RNAseq and protein expression by LC-MS directed proteomics distinguished endothelial cells in vivo from genetically matched culture (in vitro) samples. Over 43% of the transcriptome was significantly changed by the in vitro environment. Subjecting cultured cells to long-term shear stress significantly rescued the expression of approximately 17% of genes. Inclusion of heterotypic interactions by co-culture of endothelial cells with smooth muscle cells normalized approximately 9% of the original in vivo signature. We also identified novel flow dependent genes, as well as genes that necessitate heterotypic cell interactions to mimic the in vivo transcriptome. Our findings highlight specific genes and pathways that rely on contextual information for adequate expression from those that are agnostic of such environmental cues.