Bardet-Biedl Syndrome 3 protein promotes ciliary exit of the signaling protein phospholipase D via the BBSome

  1. Yan-Xia Liu
  2. Bin Xue
  3. Wei-Yue Sun
  4. Jenna L Wingfield
  5. Jun Sun
  6. Mingfu Wu
  7. Karl F Lechtreck
  8. Zhenlong Wu
  9. Zhen-Chuan Fan  Is a corresponding author
  1. Tianjin University of Science and Technology, China
  2. University of Georgia, United States
  3. Albany Medical College, United States
  4. China Agricultural University, China

Abstract

Certain ciliary signaling proteins couple with the BBSome, a conserved complex of Bardet-Biedl syndrome (BBS) proteins, to load onto retrograde intraflagellar transport (IFT) trains for their removal out of cilia in Chlamydomonas reinhardtii. Here, we show that loss of the Arf-like 6 (ARL6) GTPase BBS3 causes the signaling protein phospholipase D (PLD) to accumulate in cilia. Upon targeting to the basal body, BBSomes enter and cycle through cilia via IFT, while BBS3 in a GTP-bound state separates from BBSomes, associates with the membrane, and translocates from the basal body to cilia by diffusion. Upon arriving at the ciliary tip, GTP-bound BBS3 binds and recruits BBSomes to the ciliary membrane for interacting with PLD, thus making the PLD-laden BBSomes available to load onto retrograde IFT trains for ciliary exit. Therefore, BBS3 promotes PLD exit from cilia via the BBSome providing a regulatory mechanism for ciliary signaling protein removal out of cilia.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Yan-Xia Liu

    Institute of Health Biotechnology, Tianjin University of Science and Technology, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Bin Xue

    Institute of Health Biotechnology, Tianjin University of Science and Technology, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Wei-Yue Sun

    Institute of Health Biotechnology, Tianjin University of Science and Technology, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Jenna L Wingfield

    Department of Cellular Biology, University of Georgia, Athens, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jun Sun

    Institute of Health Biotechnology, Tianjin University of Science and Technology, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Mingfu Wu

    Department of Molecular and Cellular Physiology, Albany Medical College, Albany, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Karl F Lechtreck

    Department of Cellular Biology, University of Georgia, Athens, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Zhenlong Wu

    State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Zhen-Chuan Fan

    Institute of Health Biotechnology, Tianjin University of Science and Technology, Tianjin, China
    For correspondence
    fanzhen@tust.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3007-4281

Funding

International Center for Genetic Engineering and Biotechnology (CRP/CHN15-01)

  • Zhen-Chuan Fan

National Natural Science Foundation of China (41876134)

  • Jun Sun

National Institutes of Health (GM110413)

  • Karl F Lechtreck

National Natural Science Foundation of China (32070698)

  • Zhen-Chuan Fan

Tianjin Municipal Science and Technology Bureau (19PTSYJC00050)

  • Zhen-Chuan Fan

Tianjin Municipal Science and Technology Bureau (18JCZDJC34100)

  • Zhen-Chuan Fan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Junmin Pan, Tsinghua University, China

Publication history

  1. Received: May 20, 2020
  2. Accepted: February 13, 2021
  3. Accepted Manuscript published: February 15, 2021 (version 1)
  4. Version of Record published: March 16, 2021 (version 2)

Copyright

© 2021, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,329
    Page views
  • 189
    Downloads
  • 18
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yan-Xia Liu
  2. Bin Xue
  3. Wei-Yue Sun
  4. Jenna L Wingfield
  5. Jun Sun
  6. Mingfu Wu
  7. Karl F Lechtreck
  8. Zhenlong Wu
  9. Zhen-Chuan Fan
(2021)
Bardet-Biedl Syndrome 3 protein promotes ciliary exit of the signaling protein phospholipase D via the BBSome
eLife 10:e59119.
https://doi.org/10.7554/eLife.59119

Further reading

    1. Cell Biology
    2. Neuroscience
    Elizabeth L Wagner, Jun-Sub Im ... Jung-Bum Shin
    Research Article

    Prolonged exposure to loud noise has been shown to affect inner ear sensory hair cells in a variety of deleterious manners, including damaging the stereocilia core. The damaged sites can be visualized as ‘gaps’ in phalloidin staining of F-actin, and the enrichment of monomeric actin at these sites, along with an actin nucleator and crosslinker, suggests that localized remodeling occurs to repair the broken filaments. Herein, we show that gaps in mouse auditory hair cells are largely repaired within 1 week of traumatic noise exposure through the incorporation of newly synthesized actin. We provide evidence that Xin actin binding repeat containing 2 (XIRP2) is required for the repair process and facilitates the enrichment of monomeric γ-actin at gaps. Recruitment of XIRP2 to stereocilia gaps and stress fiber strain sites in fibroblasts is force-dependent, mediated by a novel mechanosensor domain located in the C-terminus of XIRP2. Our study describes a novel process by which hair cells can recover from sublethal hair bundle damage and which may contribute to recovery from temporary hearing threshold shifts and the prevention of age-related hearing loss.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Wenxin Zhang, Taki Nishimura ... Sharon A Tooze
    Research Article

    Autophagy is an essential catabolic pathway which sequesters and engulfs cytosolic substrates via autophagosomes, unique double-membraned structures. ATG8 proteins are ubiquitin-like proteins recruited to autophagosome membranes by lipidation at the C-terminus. ATG8s recruit substrates, such as p62, and play an important role in mediating autophagosome membrane expansion. However, the precise function of lipidated ATG8 in expansion remains obscure. Using a real-time in vitro lipidation assay, we revealed that the N-termini of lipidated human ATG8s (LC3B and GABARAP) are highly dynamic and interact with the membrane. Moreover, atomistic MD simulation and FRET assays indicate that N-termini of LC3B and GABARAP associate in cis on the membrane. By using non-tagged GABARAPs, we show that GABARAP N-terminus and its cis-membrane insertion are crucial to regulate the size of autophagosomes in cells irrespectively of p62 degradation. Our study provides fundamental molecular insights into autophagosome membrane expansion, revealing the critical and unique function of lipidated ATG8.