Bardet-Biedl Syndrome 3 protein promotes ciliary exit of the signaling protein phospholipase D via the BBSome

  1. Yan-Xia Liu
  2. Bin Xue
  3. Wei-Yue Sun
  4. Jenna L Wingfield
  5. Jun Sun
  6. Mingfu Wu
  7. Karl F Lechtreck
  8. Zhenlong Wu
  9. Zhen-Chuan Fan  Is a corresponding author
  1. Tianjin University of Science and Technology, China
  2. University of Georgia, United States
  3. Albany Medical College, United States
  4. China Agricultural University, China

Abstract

Certain ciliary signaling proteins couple with the BBSome, a conserved complex of Bardet-Biedl syndrome (BBS) proteins, to load onto retrograde intraflagellar transport (IFT) trains for their removal out of cilia in Chlamydomonas reinhardtii. Here, we show that loss of the Arf-like 6 (ARL6) GTPase BBS3 causes the signaling protein phospholipase D (PLD) to accumulate in cilia. Upon targeting to the basal body, BBSomes enter and cycle through cilia via IFT, while BBS3 in a GTP-bound state separates from BBSomes, associates with the membrane, and translocates from the basal body to cilia by diffusion. Upon arriving at the ciliary tip, GTP-bound BBS3 binds and recruits BBSomes to the ciliary membrane for interacting with PLD, thus making the PLD-laden BBSomes available to load onto retrograde IFT trains for ciliary exit. Therefore, BBS3 promotes PLD exit from cilia via the BBSome providing a regulatory mechanism for ciliary signaling protein removal out of cilia.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Yan-Xia Liu

    Institute of Health Biotechnology, Tianjin University of Science and Technology, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Bin Xue

    Institute of Health Biotechnology, Tianjin University of Science and Technology, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Wei-Yue Sun

    Institute of Health Biotechnology, Tianjin University of Science and Technology, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Jenna L Wingfield

    Department of Cellular Biology, University of Georgia, Athens, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jun Sun

    Institute of Health Biotechnology, Tianjin University of Science and Technology, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Mingfu Wu

    Department of Molecular and Cellular Physiology, Albany Medical College, Albany, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Karl F Lechtreck

    Department of Cellular Biology, University of Georgia, Athens, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Zhenlong Wu

    State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Zhen-Chuan Fan

    Institute of Health Biotechnology, Tianjin University of Science and Technology, Tianjin, China
    For correspondence
    fanzhen@tust.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3007-4281

Funding

International Center for Genetic Engineering and Biotechnology (CRP/CHN15-01)

  • Zhen-Chuan Fan

National Natural Science Foundation of China (41876134)

  • Jun Sun

National Institutes of Health (GM110413)

  • Karl F Lechtreck

National Natural Science Foundation of China (32070698)

  • Zhen-Chuan Fan

Tianjin Municipal Science and Technology Bureau (19PTSYJC00050)

  • Zhen-Chuan Fan

Tianjin Municipal Science and Technology Bureau (18JCZDJC34100)

  • Zhen-Chuan Fan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,475
    views
  • 218
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yan-Xia Liu
  2. Bin Xue
  3. Wei-Yue Sun
  4. Jenna L Wingfield
  5. Jun Sun
  6. Mingfu Wu
  7. Karl F Lechtreck
  8. Zhenlong Wu
  9. Zhen-Chuan Fan
(2021)
Bardet-Biedl Syndrome 3 protein promotes ciliary exit of the signaling protein phospholipase D via the BBSome
eLife 10:e59119.
https://doi.org/10.7554/eLife.59119

Share this article

https://doi.org/10.7554/eLife.59119

Further reading

    1. Cell Biology
    Yue Miao, Yongtao Du ... Mei Ding
    Research Article

    The spatiotemporal transition of small GTPase Rab5 to Rab7 is crucial for early-to-late endosome maturation, yet the precise mechanism governing Rab5-to-Rab7 switching remains elusive. USP8, a ubiquitin-specific protease, plays a prominent role in the endosomal sorting of a wide range of transmembrane receptors and is a promising target in cancer therapy. Here, we identified that USP8 is recruited to Rab5-positive carriers by Rabex5, a guanine nucleotide exchange factor (GEF) for Rab5. The recruitment of USP8 dissociates Rabex5 from early endosomes (EEs) and meanwhile promotes the recruitment of the Rab7 GEF SAND-1/Mon1. In USP8-deficient cells, the level of active Rab5 is increased, while the Rab7 signal is decreased. As a result, enlarged EEs with abundant intraluminal vesicles accumulate and digestive lysosomes are rudimentary. Together, our results reveal an important and unexpected role of a deubiquitinating enzyme in endosome maturation.

    1. Cancer Biology
    2. Cell Biology
    Kourosh Hayatigolkhatmi, Chiara Soriani ... Simona Rodighiero
    Tools and Resources

    Understanding the cell cycle at the single-cell level is crucial for cellular biology and cancer research. While current methods using fluorescent markers have improved the study of adherent cells, non-adherent cells remain challenging. In this study, we addressed this gap by combining a specialized surface to enhance cell attachment, the FUCCI(CA)2 sensor, an automated image analysis pipeline, and a custom machine learning algorithm. This approach enabled precise measurement of cell cycle phase durations in non-adherent cells. This method was validated in acute myeloid leukemia cell lines NB4 and Kasumi-1, which have unique cell cycle characteristics, and we tested the impact of cell cycle-modulating drugs on NB4 cells. Our cell cycle analysis system, which is also compatible with adherent cells, is fully automated and freely available, providing detailed insights from hundreds of cells under various conditions. This report presents a valuable tool for advancing cancer research and drug development by enabling comprehensive, automated cell cycle analysis in both adherent and non-adherent cells.