Bardet-Biedl Syndrome 3 protein promotes ciliary exit of the signaling protein phospholipase D via the BBSome

  1. Yan-Xia Liu
  2. Bin Xue
  3. Wei-Yue Sun
  4. Jenna L Wingfield
  5. Jun Sun
  6. Mingfu Wu
  7. Karl F Lechtreck
  8. Zhenlong Wu
  9. Zhen-Chuan Fan  Is a corresponding author
  1. Tianjin University of Science and Technology, China
  2. University of Georgia, United States
  3. Albany Medical College, United States
  4. China Agricultural University, China

Abstract

Certain ciliary signaling proteins couple with the BBSome, a conserved complex of Bardet-Biedl syndrome (BBS) proteins, to load onto retrograde intraflagellar transport (IFT) trains for their removal out of cilia in Chlamydomonas reinhardtii. Here, we show that loss of the Arf-like 6 (ARL6) GTPase BBS3 causes the signaling protein phospholipase D (PLD) to accumulate in cilia. Upon targeting to the basal body, BBSomes enter and cycle through cilia via IFT, while BBS3 in a GTP-bound state separates from BBSomes, associates with the membrane, and translocates from the basal body to cilia by diffusion. Upon arriving at the ciliary tip, GTP-bound BBS3 binds and recruits BBSomes to the ciliary membrane for interacting with PLD, thus making the PLD-laden BBSomes available to load onto retrograde IFT trains for ciliary exit. Therefore, BBS3 promotes PLD exit from cilia via the BBSome providing a regulatory mechanism for ciliary signaling protein removal out of cilia.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Yan-Xia Liu

    Institute of Health Biotechnology, Tianjin University of Science and Technology, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Bin Xue

    Institute of Health Biotechnology, Tianjin University of Science and Technology, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Wei-Yue Sun

    Institute of Health Biotechnology, Tianjin University of Science and Technology, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Jenna L Wingfield

    Department of Cellular Biology, University of Georgia, Athens, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jun Sun

    Institute of Health Biotechnology, Tianjin University of Science and Technology, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Mingfu Wu

    Department of Molecular and Cellular Physiology, Albany Medical College, Albany, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Karl F Lechtreck

    Department of Cellular Biology, University of Georgia, Athens, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Zhenlong Wu

    State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Zhen-Chuan Fan

    Institute of Health Biotechnology, Tianjin University of Science and Technology, Tianjin, China
    For correspondence
    fanzhen@tust.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3007-4281

Funding

International Center for Genetic Engineering and Biotechnology (CRP/CHN15-01)

  • Zhen-Chuan Fan

National Natural Science Foundation of China (41876134)

  • Jun Sun

National Institutes of Health (GM110413)

  • Karl F Lechtreck

National Natural Science Foundation of China (32070698)

  • Zhen-Chuan Fan

Tianjin Municipal Science and Technology Bureau (19PTSYJC00050)

  • Zhen-Chuan Fan

Tianjin Municipal Science and Technology Bureau (18JCZDJC34100)

  • Zhen-Chuan Fan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Junmin Pan, Tsinghua University, China

Version history

  1. Received: May 20, 2020
  2. Accepted: February 13, 2021
  3. Accepted Manuscript published: February 15, 2021 (version 1)
  4. Version of Record published: March 16, 2021 (version 2)

Copyright

© 2021, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,409
    views
  • 215
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yan-Xia Liu
  2. Bin Xue
  3. Wei-Yue Sun
  4. Jenna L Wingfield
  5. Jun Sun
  6. Mingfu Wu
  7. Karl F Lechtreck
  8. Zhenlong Wu
  9. Zhen-Chuan Fan
(2021)
Bardet-Biedl Syndrome 3 protein promotes ciliary exit of the signaling protein phospholipase D via the BBSome
eLife 10:e59119.
https://doi.org/10.7554/eLife.59119

Share this article

https://doi.org/10.7554/eLife.59119

Further reading

    1. Cell Biology
    Mathieu C Husser, Nhat P Pham ... Alisa Piekny
    Tools and Resources

    Endogenous tags have become invaluable tools to visualize and study native proteins in live cells. However, generating human cell lines carrying endogenous tags is difficult due to the low efficiency of homology-directed repair. Recently, an engineered split mNeonGreen protein was used to generate a large-scale endogenous tag library in HEK293 cells. Using split mNeonGreen for large-scale endogenous tagging in human iPSCs would open the door to studying protein function in healthy cells and across differentiated cell types. We engineered an iPS cell line to express the large fragment of the split mNeonGreen protein (mNG21-10) and showed that it enables fast and efficient endogenous tagging of proteins with the short fragment (mNG211). We also demonstrate that neural network-based image restoration enables live imaging studies of highly dynamic cellular processes such as cytokinesis in iPSCs. This work represents the first step towards a genome-wide endogenous tag library in human stem cells.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.