Metabolic but not transcriptional regulation by PKM2 is important for Natural Killer cell responses

  1. Jessica F Walls
  2. Jeff J Subleski
  3. Erika M Palmieri
  4. Marieli Gonzalez Cotto
  5. Clair M Gardiner
  6. Daniel W McVicar
  7. David K Finlay  Is a corresponding author
  1. National Cancer Institute, United States
  2. Trinity College Dublin, Ireland

Abstract

Natural Killer (NK) cells have an important role in immune responses to viruses and tumours. Integrating changes in signal transduction pathways and cellular metabolism is essential for effective NK cells responses. The glycolytic enzyme Pyruvate Kinase Muscle 2 (PKM2) has described roles in regulating glycolytic flux and signal transduction, particularly gene transcription. While PKM2 expression is robustly induced in activated NK cells, mice lacking PKM2 in NK cells showed no defect in NK cell metabolism, transcription or anti-viral responses to MCMV infection. NK cell metabolism was maintained due to compensatory PKM1 expression in PKM2-null NK cells. To further investigate the role of PKM2 we used TEPP-46, which increases PKM2 catalytic activity while inhibiting any PKM2 signalling functions. NK cells activated with TEPP-46 had reduced effector function due to TEPP-46-induced increases in oxidative stress. Overall, PKM2-regulated glycolytic metabolism and redox status, not transcriptional control, facilitate optimal NK cells responses.

Data availability

RNA sequencing data has been uploaded to GEO (GSE156064).

The following data sets were generated

Article and author information

Author details

  1. Jessica F Walls

    Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jeff J Subleski

    Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Erika M Palmieri

    Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Marieli Gonzalez Cotto

    Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Clair M Gardiner

    School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  6. Daniel W McVicar

    Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. David K Finlay

    School of Biochemistry and Immunology and School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin, Ireland
    For correspondence
    finlayd@tcd.ie
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2716-6679

Funding

National Institutes of Health

  • Daniel W McVicar

Wellcome (106811/Z/15/Z)

  • Jessica F Walls

National Institutes of Health

  • Jessica F Walls

National Institutes of Health

  • Erika M Palmieri

National Institutes of Health

  • Marieli Gonzalez Cotto

National Institutes of Health

  • Jeff J Subleski

Science Foundation Ireland (18/ERCS/6005)

  • David K Finlay

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Mice utilised in Ireland were maintained in compliance with Irish Department of Health and Children regulations and with the approval of the University of Dublin's ethical review board. Mice utilised in the USA were maintained in accordance with institutional guidelines for animal care and use at NCI Frederick, NIH.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 3,300
    views
  • 431
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jessica F Walls
  2. Jeff J Subleski
  3. Erika M Palmieri
  4. Marieli Gonzalez Cotto
  5. Clair M Gardiner
  6. Daniel W McVicar
  7. David K Finlay
(2020)
Metabolic but not transcriptional regulation by PKM2 is important for Natural Killer cell responses
eLife 9:e59166.
https://doi.org/10.7554/eLife.59166

Share this article

https://doi.org/10.7554/eLife.59166

Further reading

    1. Cell Biology
    2. Developmental Biology
    Sofía Suárez Freire, Sebastián Perez-Pandolfo ... Mariana Melani
    Research Article

    Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.

    1. Cell Biology
    Yue Miao, Yongtao Du ... Mei Ding
    Research Article

    The spatiotemporal transition of small GTPase Rab5 to Rab7 is crucial for early-to-late endosome maturation, yet the precise mechanism governing Rab5-to-Rab7 switching remains elusive. USP8, a ubiquitin-specific protease, plays a prominent role in the endosomal sorting of a wide range of transmembrane receptors and is a promising target in cancer therapy. Here, we identified that USP8 is recruited to Rab5-positive carriers by Rabex5, a guanine nucleotide exchange factor (GEF) for Rab5. The recruitment of USP8 dissociates Rabex5 from early endosomes (EEs) and meanwhile promotes the recruitment of the Rab7 GEF SAND-1/Mon1. In USP8-deficient cells, the level of active Rab5 is increased, while the Rab7 signal is decreased. As a result, enlarged EEs with abundant intraluminal vesicles accumulate and digestive lysosomes are rudimentary. Together, our results reveal an important and unexpected role of a deubiquitinating enzyme in endosome maturation.