Metabolic but not transcriptional regulation by PKM2 is important for Natural Killer cell responses

  1. Jessica F Walls
  2. Jeff J Subleski
  3. Erika M Palmieri
  4. Marieli Gonzalez Cotto
  5. Clair M Gardiner
  6. Daniel W McVicar
  7. David K Finlay  Is a corresponding author
  1. National Cancer Institute, United States
  2. Trinity College Dublin, Ireland

Abstract

Natural Killer (NK) cells have an important role in immune responses to viruses and tumours. Integrating changes in signal transduction pathways and cellular metabolism is essential for effective NK cells responses. The glycolytic enzyme Pyruvate Kinase Muscle 2 (PKM2) has described roles in regulating glycolytic flux and signal transduction, particularly gene transcription. While PKM2 expression is robustly induced in activated NK cells, mice lacking PKM2 in NK cells showed no defect in NK cell metabolism, transcription or anti-viral responses to MCMV infection. NK cell metabolism was maintained due to compensatory PKM1 expression in PKM2-null NK cells. To further investigate the role of PKM2 we used TEPP-46, which increases PKM2 catalytic activity while inhibiting any PKM2 signalling functions. NK cells activated with TEPP-46 had reduced effector function due to TEPP-46-induced increases in oxidative stress. Overall, PKM2-regulated glycolytic metabolism and redox status, not transcriptional control, facilitate optimal NK cells responses.

Data availability

RNA sequencing data has been uploaded to GEO (GSE156064).

The following data sets were generated

Article and author information

Author details

  1. Jessica F Walls

    Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jeff J Subleski

    Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Erika M Palmieri

    Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Marieli Gonzalez Cotto

    Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Clair M Gardiner

    School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  6. Daniel W McVicar

    Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. David K Finlay

    School of Biochemistry and Immunology and School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin, Ireland
    For correspondence
    finlayd@tcd.ie
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2716-6679

Funding

National Institutes of Health

  • Daniel W McVicar

Wellcome (106811/Z/15/Z)

  • Jessica F Walls

National Institutes of Health

  • Jessica F Walls

National Institutes of Health

  • Erika M Palmieri

National Institutes of Health

  • Marieli Gonzalez Cotto

National Institutes of Health

  • Jeff J Subleski

Science Foundation Ireland (18/ERCS/6005)

  • David K Finlay

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Mice utilised in Ireland were maintained in compliance with Irish Department of Health and Children regulations and with the approval of the University of Dublin's ethical review board. Mice utilised in the USA were maintained in accordance with institutional guidelines for animal care and use at NCI Frederick, NIH.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 3,261
    views
  • 429
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jessica F Walls
  2. Jeff J Subleski
  3. Erika M Palmieri
  4. Marieli Gonzalez Cotto
  5. Clair M Gardiner
  6. Daniel W McVicar
  7. David K Finlay
(2020)
Metabolic but not transcriptional regulation by PKM2 is important for Natural Killer cell responses
eLife 9:e59166.
https://doi.org/10.7554/eLife.59166

Share this article

https://doi.org/10.7554/eLife.59166

Further reading

    1. Cell Biology
    2. Stem Cells and Regenerative Medicine
    Nathaniel Paul Meyer, Tania Singh ... Diane L Barber
    Research Article

    Our understanding of the transitions of human embryonic stem cells between distinct stages of pluripotency relies predominantly on regulation by transcriptional and epigenetic programs with limited insight on the role of established morphological changes. We report remodeling of the actin cytoskeleton of human embryonic stem cells (hESCs) as they transition from primed to naïve pluripotency which includes assembly of a ring of contractile actin filaments encapsulating colonies of naïve hESCs. Activity of the Arp2/3 complex is required for the actin ring, to establish uniform cell mechanics within naïve colonies, promote nuclear translocation of the Hippo pathway effectors YAP and TAZ, and effective transition to naïve pluripotency. RNA-sequencing analysis confirms that Arp2/3 complex activity regulates Hippo signaling in hESCs, and impaired naïve pluripotency with inhibited Arp2/3 complex activity is rescued by expressing a constitutively active, nuclear-localized YAP-S127A. Moreover, expression of YAP-S127A partially restores the actin filament fence with Arp2/3 complex inhibition, suggesting that actin filament remodeling is both upstream and downstream of YAP activity. These new findings on the cell biology of hESCs reveal a mechanism for cytoskeletal dynamics coordinating cell mechanics to regulate gene expression and facilitate transitions between pluripotency states.

    1. Cell Biology
    Eleanor Martin, Rossana Girardello ... Alexander Ludwig
    Research Article

    Caveolae are small membrane pits with fundamental roles in mechanotransduction. Several studies have shown that caveolae flatten out in response to an increase in membrane tension, thereby acting as a mechanosensitive membrane reservoir that buffers acute mechanical stress. The dynamic assembly and disassembly of caveolae has also been implicated in the control of RhoA/ROCK-mediated actomyosin contractility at the rear of migrating cells. However, how membrane tension controls the organisation of caveolae and caveolae-mediated mechanotransduction is poorly understood. To address this, we systematically quantified protein-protein interactions of caveolin-1 in migrating RPE1 cells at steady state and in response to an acute increase in membrane tension using biotin-based proximity labelling and quantitative mass spectrometry. Our data show that caveolae are highly enriched at the rear of migrating RPE1 cells and that membrane tension rapidly and reversibly disassembles the caveolar protein coat. Membrane tension also dislodges caveolin-1 from focal adhesion proteins and several mechanosensitive cortical actin regulators including filamins and cortactin. In addition, we present evidence that ROCK and the RhoGAP ARHGAP29 are associated with caveolin-1 in a membrane tension-dependent manner, and that ARHGAP29 regulates caveolin-1 Y14 phosphorylation, caveolae rear localisation, and RPE1 cell migration. Taken together, our work uncovers a membrane tension-sensitive coupling between caveolae and the rear-localised F-actin cytoskeleton. This provides a framework for dissecting the molecular mechanisms underlying caveolae-regulated mechanotransduction pathways.