fruitless tunes functional flexibility of courtship circuitry during development

Abstract

Drosophila male courtship is controlled by the male-specific products of the fruitless (fruM) gene and its expressing neuronal circuitry. fruM is considered a master gene that controls all aspects of male courtship. By temporally and spatially manipulating fruM expression, we found that fruM is required during a critical developmental period for innate courtship towards females, while its function during adulthood is involved in inhibiting male-male courtship. By altering or eliminating fruM expression, we generated males that are innately heterosexual, homosexual, bisexual, or without innate courtship but could acquire such behavior in an experience-dependent manner. These findings show that fruM is not absolutely necessary for courtship but is critical during development to build a sex circuitry with reduced flexibility and enhanced efficiency, and provide a new view about how fruM tunes functional flexibility of a sex circuitry instead of switching on its function as conventionally viewed.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1, 2, 3, Figure 3-figure supplement 1, 2 and 4.

Article and author information

Author details

  1. Jie Chen

    School of Life Science and Technology, Southeast University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Sihui Jin

    School of Life Science and Technology, Southeast University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Dandan Chen

    School of Life Science and Technology, Southeast University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Jie Cao

    School of Life Science and Technology, Southeast University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Xiaoxiao Ji

    School of Life Science and Technology, Southeast University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Qionglin Peng

    School of Life Science and Technology, Southeast University, Nanjing, China
    For correspondence
    pengqionglin@seu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  7. Yufeng Pan

    School of Life Science and Technology, Southeast University, Nanjing, China
    For correspondence
    pany@seu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1535-9716

Funding

National Natural Science Foundation of China (31970943,31622028)

  • Yufeng Pan

National Natural Science Foundation of China (31700905)

  • Qionglin Peng

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kristin Scott, University of California, Berkeley, United States

Version history

  1. Received: May 22, 2020
  2. Accepted: January 18, 2021
  3. Accepted Manuscript published: January 19, 2021 (version 1)
  4. Version of Record published: February 4, 2021 (version 2)

Copyright

© 2021, Chen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,973
    views
  • 484
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jie Chen
  2. Sihui Jin
  3. Dandan Chen
  4. Jie Cao
  5. Xiaoxiao Ji
  6. Qionglin Peng
  7. Yufeng Pan
(2021)
fruitless tunes functional flexibility of courtship circuitry during development
eLife 10:e59224.
https://doi.org/10.7554/eLife.59224

Share this article

https://doi.org/10.7554/eLife.59224

Further reading

    1. Neuroscience
    Songyao Zhang, Tuo Zhang ... Tianming Liu
    Research Article

    Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.

    1. Neuroscience
    Avani Koparkar, Timothy L Warren ... Lena Veit
    Research Article

    Complex skills like speech and dance are composed of ordered sequences of simpler elements, but the neuronal basis for the syntactic ordering of actions is poorly understood. Birdsong is a learned vocal behavior composed of syntactically ordered syllables, controlled in part by the songbird premotor nucleus HVC (proper name). Here, we test whether one of HVC’s recurrent inputs, mMAN (medial magnocellular nucleus of the anterior nidopallium), contributes to sequencing in adult male Bengalese finches (Lonchura striata domestica). Bengalese finch song includes several patterns: (1) chunks, comprising stereotyped syllable sequences; (2) branch points, where a given syllable can be followed probabilistically by multiple syllables; and (3) repeat phrases, where individual syllables are repeated variable numbers of times. We found that following bilateral lesions of mMAN, acoustic structure of syllables remained largely intact, but sequencing became more variable, as evidenced by ‘breaks’ in previously stereotyped chunks, increased uncertainty at branch points, and increased variability in repeat numbers. Our results show that mMAN contributes to the variable sequencing of vocal elements in Bengalese finch song and demonstrate the influence of recurrent projections to HVC. Furthermore, they highlight the utility of species with complex syntax in investigating neuronal control of ordered sequences.