Divergent projections of the prelimbic cortex bidirectionally regulate active avoidance

  1. Maria M Diehl  Is a corresponding author
  2. Jorge M Iravedra-Garcia
  3. Jonathan Morán-Sierra
  4. Gabriel Rojas-Bowe
  5. Fabiola N Gonzalez-Diaz
  6. Viviana P Valentín-Valentín
  7. Gregory J Quirk
  1. Kansas State University, United States
  2. University of Puerto Rico School of Medicine, Puerto Rico

Abstract

The prefrontal cortex (PFC) integrates incoming information to guide our actions. When motivation for food-seeking competes with avoidance, the PFC likely plays a role in selecting the optimal choice. In platform-mediated active avoidance, rats avoid a tone-signaled footshock by stepping onto a nearby platform, delaying access to sucrose pellets. This avoidance requires prelimbic (PL) prefrontal cortex, basolateral amygdala (BLA), and ventral striatum (VS). We previously showed that inhibitory tone responses of PL neurons correlate with avoidability of shock (Diehl et al., 2018). Here, we optogenetically modulated PL terminals in VS and BLA to identify PL outputs regulating avoidance. Photoactivating PL-VS projections reduced avoidance, whereas photoactivating PL-BLA projections increased avoidance. Moreover, photosilencing PL-BLA or BLA-VS projections reduced avoidance, suggesting that VS receives opposing inputs from PL and BLA. Bidirectional modulation of avoidance by PL projections to VS and BLA enables the animal to make appropriate decisions when faced with competing drives.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Maria M Diehl

    Psychological Sciences, Kansas State University, Manhattan, United States
    For correspondence
    maria.m.diehl@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7370-6106
  2. Jorge M Iravedra-Garcia

    Psychiatry and Neurobiology & Anatomy, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
    Competing interests
    The authors declare that no competing interests exist.
  3. Jonathan Morán-Sierra

    Psychiatry and Neurobiology & Anatomy, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
    Competing interests
    The authors declare that no competing interests exist.
  4. Gabriel Rojas-Bowe

    Psychiatry and Neurobiology & Anatomy, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7042-930X
  5. Fabiola N Gonzalez-Diaz

    Psychiatry and Neurobiology & Anatomy, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
    Competing interests
    The authors declare that no competing interests exist.
  6. Viviana P Valentín-Valentín

    Psychiatry and Neurobiology & Anatomy, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
    Competing interests
    The authors declare that no competing interests exist.
  7. Gregory J Quirk

    Psychiatry and Neurobiology & Anatomy, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7534-2764

Funding

National Institute of Mental Health (F32-MH105185)

  • Maria M Diehl

National Institute of Mental Health (R37-MH058883)

  • Gregory J Quirk

National Institute of Mental Health (P50-MH106435)

  • Gregory J Quirk

University of Puerto Rico President's Office

  • Gregory J Quirk

National Institute of General Medical Sciences (R25-GM097635)

  • Jorge M Iravedra-Garcia
  • Viviana P Valentín-Valentín

National Institute of General Medical Sciences (R25-GM061151)

  • Fabiola N Gonzalez-Diaz

National Institute of General Medical Sciences (T34-GM007821)

  • Gabriel Rojas-Bowe

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Geoffrey Schoenbaum, National Institute on Drug Abuse, National Institutes of Health, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#A3340107) of the University of Puerto Rico. The protocol was approved by the Committee on the Ethics of Animal Experiments of the University of Puerto Rico. All surgery was performed under isofluorane anesthesia, and every effort was made to minimize suffering.

Version history

  1. Received: May 28, 2020
  2. Accepted: October 14, 2020
  3. Accepted Manuscript published: October 15, 2020 (version 1)
  4. Version of Record published: October 26, 2020 (version 2)

Copyright

© 2020, Diehl et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,963
    views
  • 387
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maria M Diehl
  2. Jorge M Iravedra-Garcia
  3. Jonathan Morán-Sierra
  4. Gabriel Rojas-Bowe
  5. Fabiola N Gonzalez-Diaz
  6. Viviana P Valentín-Valentín
  7. Gregory J Quirk
(2020)
Divergent projections of the prelimbic cortex bidirectionally regulate active avoidance
eLife 9:e59281.
https://doi.org/10.7554/eLife.59281

Share this article

https://doi.org/10.7554/eLife.59281

Further reading

    1. Neuroscience
    Sandra P Cárdenas-García, Sundas Ijaz, Alberto E Pereda
    Research Article

    Most nervous systems combine both transmitter-mediated and direct cell-cell communication, known as 'chemical' and 'electrical' synapses, respectively. Chemical synapses can be identified by their multiple structural components. Electrical synapses are, on the other hand, generally defined by the presence of a 'gap junction' (a cluster of intercellular channels) between two neuronal processes. However, while gap junctions provide the communicating mechanism, it is unknown whether electrical transmission requires the contribution of additional cellular structures. We investigated this question at identifiable single synaptic contacts on the zebrafish Mauthner cells, at which gap junctions coexist with specializations for neurotransmitter release and where the contact unequivocally defines the anatomical limits of a synapse. Expansion microscopy of these single contacts revealed a detailed map of the incidence and spatial distribution of proteins pertaining to various synaptic structures. Multiple gap junctions of variable size were identified by the presence of their molecular components. Remarkably, most of the synaptic contact's surface was occupied by interleaving gap junctions and components of adherens junctions, suggesting a close functional association between these two structures. In contrast, glutamate receptors were confined to small peripheral portions of the contact, indicating that most of the synaptic area functions as an electrical synapse. Thus, our results revealed the overarching organization of an electrical synapse that operates with not one, but multiple gap junctions, in close association with structural and signaling molecules known to be components of adherens junctions. The relationship between these intercellular structures will aid in establishing the boundaries of electrical synapses found throughout animal connectomes and provide insight into the structural organization and functional diversity of electrical synapses.

    1. Neuroscience
    Alexandra L Jellinger, Rebecca L Suthard ... Steve Ramirez
    Research Article

    Negative memories engage a brain and body-wide stress response in humans that can alter cognition and behavior. Prolonged stress responses induce maladaptive cellular, circuit, and systems-level changes that can lead to pathological brain states and corresponding disorders in which mood and memory are affected. However, it is unclear if repeated activation of cells processing negative memories induces similar phenotypes in mice. In this study, we used an activity-dependent tagging method to access neuronal ensembles and assess their molecular characteristics. Sequencing memory engrams in mice revealed that positive (male-to-female exposure) and negative (foot shock) cells upregulated genes linked to anti- and pro-inflammatory responses, respectively. To investigate the impact of persistent activation of negative engrams, we chemogenetically activated them in the ventral hippocampus over 3 months and conducted anxiety and memory-related tests. Negative engram activation increased anxiety behaviors in both 6- and 14-month-old mice, reduced spatial working memory in older mice, impaired fear extinction in younger mice, and heightened fear generalization in both age groups. Immunohistochemistry revealed changes in microglial and astrocytic structure and number in the hippocampus. In summary, repeated activation of negative memories induces lasting cellular and behavioral abnormalities in mice, offering insights into the negative effects of chronic negative thinking-like behaviors on human health.