AAV ablates neurogenesis in the adult murine hippocampus

  1. Stephen Johnston
  2. Sarah Parylak
  3. Stacy Kim
  4. Nolan Mac
  5. Christina Lim
  6. Iryna Gallina
  7. Cooper Bloyd
  8. Alexander Newberry
  9. Christian D Saavedra
  10. Ondrej Novak
  11. J Tiago Goncalves
  12. Fred H Gage  Is a corresponding author
  13. Matthew Shtrahman  Is a corresponding author
  1. University of California, San Diego, United States
  2. The Salk Institute for Biological Studies, United States
  3. Salk Institute for Biological Studies, United States
  4. University of California, San Francisco, United States
  5. Charles University, Czech Republic
  6. Albert Einstein College of Medicine, United States
  7. Salk Institute, United States

Abstract

Recombinant adeno-associated virus (rAAV) has been widely used as a viral vector across mammalian biology and has been shown to be safe and effective in human gene therapy. We demonstrate that neural progenitor cells (NPCs) and immature dentate granule cells (DGCs) within the adult murine hippocampus are particularly sensitive to rAAV-induced cell death. Cell loss is dose dependent and nearly complete at experimentally relevant viral titers. rAAV-induced cell death is rapid and persistent, with loss of BrdU-labeled cells within 18 hours post-injection and no evidence of recovery of adult neurogenesis at 3 months post-injection. The remaining mature DGCs appear hyperactive 4 weeks post-injection based on immediate early gene expression, consistent with previous studies investigating the effects of attenuating adult neurogenesis. In vitro application of AAV or electroporation of AAV2 inverted terminal repeats (ITRs) is sufficient to induce cell death. Efficient transduction of the dentate gyrus (DG)-without ablating adult neurogenesis-can be achieved by injection of rAAV2-retro serotyped virus into CA3. rAAV2-retro results in efficient retrograde labeling of mature DGCs and permits in vivo 2-photon calcium imaging of dentate activity while leaving adult neurogenesis intact. These findings expand on recent reports implicating rAAV-linked toxicity in stem cells and other cell types and suggest that future work using rAAV as an experimental tool in the DG and as a gene therapy for diseases of the central nervous system (CNS) should be carefully evaluated.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all figures and supplemental figure

Article and author information

Author details

  1. Stephen Johnston

    Neurosciences Graduate Program, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Sarah Parylak

    The Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Stacy Kim

    Department of Neurosciences, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Nolan Mac

    Department of Biology, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Christina Lim

    Laboratory of Genetics, Salk Institute for Biological Studies, LA JOLLA, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Iryna Gallina

    Laboratory of Genetics, Salk Institute for Biological Studies, LA JOLLA, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Cooper Bloyd

    School of Medicine, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Alexander Newberry

    Department of Neurosciences, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Christian D Saavedra

    Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Ondrej Novak

    Department of Physiology, Charles University, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  11. J Tiago Goncalves

    Neuroscience, Albert Einstein College of Medicine, Bronx, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Fred H Gage

    Laboratory of Genetics, Salk Institute, La Jolla, United States
    For correspondence
    gage@salk.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0938-4106
  13. Matthew Shtrahman

    Department of Neurosciences, University of California, San Diego, La Jolla, United States
    For correspondence
    mshtrahman@ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3185-890X

Funding

National Institutes of Health (R01 AG056306)

  • Fred H Gage

National Institutes of Health (R01 MH114030)

  • Fred H Gage

National Institutes of Health (K08 NS093130)

  • Matthew Shtrahman

McKnight Endowment Fund for Neuroscience

  • Fred H Gage
  • Matthew Shtrahman

National Institutes of Health (S10OD025060)

  • Matthew Shtrahman

James S. McDonnell Foundation

  • Fred H Gage

Leona M. and Harry B. Helmsley Charitable Trust

  • Fred H Gage

Ray and Dagmar Dolby Family Fund

  • Fred H Gage

Dan and Martina Lewis (Biophotonics Fellows Program)

  • Stephen Johnston

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (S12201) of the University of California, San Diego. All surgery was performed under isoflurane anesthesia, and every effort was made to minimize suffering

Copyright

© 2021, Johnston et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,745
    views
  • 1,175
    downloads
  • 59
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Stephen Johnston
  2. Sarah Parylak
  3. Stacy Kim
  4. Nolan Mac
  5. Christina Lim
  6. Iryna Gallina
  7. Cooper Bloyd
  8. Alexander Newberry
  9. Christian D Saavedra
  10. Ondrej Novak
  11. J Tiago Goncalves
  12. Fred H Gage
  13. Matthew Shtrahman
(2021)
AAV ablates neurogenesis in the adult murine hippocampus
eLife 10:e59291.
https://doi.org/10.7554/eLife.59291

Share this article

https://doi.org/10.7554/eLife.59291

Further reading

    1. Neuroscience
    Eleni Hackwell, Sharon R Ladyman ... David R Grattan
    Research Article

    The specific role that prolactin plays in lactational infertility, as distinct from other suckling or metabolic cues, remains unresolved. Here, deletion of the prolactin receptor (Prlr) from forebrain neurons or arcuate kisspeptin neurons resulted in failure to maintain normal lactation-induced suppression of estrous cycles. Kisspeptin immunoreactivity and pulsatile LH secretion were increased in these mice, even in the presence of ongoing suckling stimulation and lactation. GCaMP fibre photometry of arcuate kisspeptin neurons revealed that the normal episodic activity of these neurons is rapidly suppressed in pregnancy and this was maintained throughout early lactation. Deletion of Prlr from arcuate kisspeptin neurons resulted in early reactivation of episodic activity of kisspeptin neurons prior to a premature return of reproductive cycles in early lactation. These observations show dynamic variation in arcuate kisspeptin neuronal activity associated with the hormonal changes of pregnancy and lactation, and provide direct evidence that prolactin action on arcuate kisspeptin neurons is necessary for suppressing fertility during lactation in mice.

    1. Neuroscience
    Nico A Flierman, Sue Ann Koay ... Chris I De Zeeuw
    Research Article

    The role of cerebellum in controlling eye movements is well established, but its contribution to more complex forms of visual behavior has remained elusive. To study cerebellar activity during visual attention we recorded extracellular activity of dentate nucleus (DN) neurons in two non-human primates (NHPs). NHPs were trained to read the direction indicated by a peripheral visual stimulus while maintaining fixation at the center, and report the direction of the cue by performing a saccadic eye movement into the same direction following a delay. We found that single-unit DN neurons modulated spiking activity over the entire time course of the task, and that their activity often bridged temporally separated intra-trial events, yet in a heterogeneous manner. To better understand the heterogeneous relationship between task structure, behavioral performance, and neural dynamics, we constructed a behavioral, an encoding, and a decoding model. Both NHPs showed different behavioral strategies, which influenced the performance. Activity of the DN neurons reflected the unique strategies, with the direction of the visual stimulus frequently being encoded long before an upcoming saccade. Moreover, the latency of the ramping activity of DN neurons following presentation of the visual stimulus was shorter in the better performing NHP. Labeling with the retrograde tracer Cholera Toxin B in the recording location in the DN indicated that these neurons predominantly receive inputs from Purkinje cells in the D1 and D2 zones of the lateral cerebellum as well as neurons of the principal olive and medial pons, all regions known to connect with neurons in the prefrontal cortex contributing to planning of saccades. Together, our results highlight that DN neurons can dynamically modulate their activity during a visual attention task, comprising not only sensorimotor but also cognitive attentional components.