Abstract

A vast portion of the mammalian genome is transcribed as long non-coding RNAs (lncRNAs) acting in the cytoplasm with largely unknown functions. Surprisingly, lncRNAs have been shown to interact with ribosomes, encode peptides, or act as ribosome sponges. These functions still remain mostly undetected and understudied owing to the lack of efficient tools for genome-wide simultaneous identification of ribosome-associated and peptide-producing lncRNAs. Here we present AHARIBO, a method for the detection of lncRNAs either untranslated, but associated with ribosomes, or encoding small peptides. Using AHARIBO in mouse embryonic stem cells during neuronal differentiation, we isolated ribosome-protected RNA fragments, translated RNAs and corresponding de novo synthesized peptides. Besides identifying mRNAs under active translation and associated ribosomes, we found and distinguished lncRNAs acting as ribosome sponges or encoding micropeptides, laying the ground for a better functional understanding of hundreds lncRNAs.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided. All sequencing data are deposited in public archives and made available upon publication.

The following previously published data sets were used

Article and author information

Author details

  1. Luca Minati

    Ribosome engineering, IMMAGINA biotechnology, Trento, Italy
    Competing interests
    Luca Minati, L.M is an employee of IMMAGINA BioTechnology S.r.l..
  2. Claudia Firrito

    Ribosome engineering, IMMAGINA biotechnology, Trento, Italy
    Competing interests
    Claudia Firrito, C.F. is an employee of IMMAGINA BioTechnology S.r.l..
  3. Alessia Del Piano

    Ribosome engeneering, IMMAGINA biotechnology, Trento, Italy
    Competing interests
    Alessia Del Piano, A.D.P is an employee of IMMAGINA BioTechnology S.r.l..
  4. Alberto Peretti

    Ribosome engineering, IMMAGINA biotechnology, Trento, Italy
    Competing interests
    Alberto Peretti, A.P. is an employee of IMMAGINA BioTechnology S.r.l..
  5. Simone Sidoli

    Department of Biochemistry, Albert Einstein College of Medicine, Bronx, United States
    Competing interests
    No competing interests declared.
  6. Daniele Peroni

    Mass Spectrometry Facility, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0862-266X
  7. Romina Belli

    Mass Spectrometry Facility, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5690-2797
  8. Francesco Gandolfi

    Laboratory of Bioinformatics and Computational Genomics, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
    Competing interests
    No competing interests declared.
  9. Alessandro Romanel

    Laboratory of Bioinformatics and Computational Genomics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
    Competing interests
    No competing interests declared.
  10. Paola Bernabo

    Ribosome engineering, IMMAGINA biotechnology, Trento, Italy
    Competing interests
    Paola Bernabo, P.B is an employee of IMMAGINA BioTechnology S.r.l..
  11. Jacopo Zasso

    Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3151-6443
  12. Alessandro Quattrone

    Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
    Competing interests
    Alessandro Quattrone, A.Q is a shareholder of IMMAGINA BioTechnology S.r.l.
  13. Graziano Guella

    Department of Physics, University of Trento, Trento, Italy
    Competing interests
    Graziano Guella, G.G. is shareholders of IMMAGINA BioTechnology S.r.l.
  14. Fabio Lauria

    Institute of Biophysics, CNR Unit at Trento, Trento, Italy
    Competing interests
    No competing interests declared.
  15. Gabriella Viero

    Institute of Biophysics, CNR Unit at Trento, Trento, Italy
    Competing interests
    Gabriella Viero, G.V is a scientific advisor of IMMAGINA BioTechnology S.r.l..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6755-285X
  16. Massimiliano Clamer

    Ribosome engineering, IMMAGINA biotechnology, Trento, Italy
    For correspondence
    mclamer@immaginabiotech.com
    Competing interests
    Massimiliano Clamer, M.C. is the founder of, director of, and a shareholder in IMMAGINA BioTechnology S.r.l., a company engaged in the development of new technologies for gene expression analysis at the ribosomal level..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8185-059X

Funding

Autonumus Province of Trento adn Banca Intesa (LP6/99)

  • Luca Minati
  • Claudia Firrito
  • Alessia Del Piano
  • Alberto Peretti
  • Paola Bernabo
  • Massimiliano Clamer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Minati et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,966
    views
  • 484
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Luca Minati
  2. Claudia Firrito
  3. Alessia Del Piano
  4. Alberto Peretti
  5. Simone Sidoli
  6. Daniele Peroni
  7. Romina Belli
  8. Francesco Gandolfi
  9. Alessandro Romanel
  10. Paola Bernabo
  11. Jacopo Zasso
  12. Alessandro Quattrone
  13. Graziano Guella
  14. Fabio Lauria
  15. Gabriella Viero
  16. Massimiliano Clamer
(2021)
One-shot analysis of translated mammalian lncRNAs with AHARIBO
eLife 10:e59303.
https://doi.org/10.7554/eLife.59303

Share this article

https://doi.org/10.7554/eLife.59303

Further reading

    1. Cell Biology
    L Catalina Acuff, Karen Guillemin
    Insight

    A reciprocal interaction between gut bacteria and gut cells affects protein absorption in the host.

    1. Cell Biology
    2. Microbiology and Infectious Disease
    Clément Mazeaud, Stefan Pfister ... Laurent Chatel-Chaix
    Research Article

    Zika virus (ZIKV) infection causes significant human disease that, with no approved treatment or vaccine, constitutes a major public health concern. Its life cycle entirely relies on the cytoplasmic fate of the viral RNA genome (vRNA) through a fine-tuned equilibrium between vRNA translation, replication, and packaging into new virions, all within virus-induced replication organelles (vROs). In this study, with an RNA interference (RNAi) mini-screening and subsequent functional characterization, we have identified insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) as a new host dependency factor that regulates vRNA synthesis. In infected cells, IGF2BP2 associates with viral NS5 polymerase and redistributes to the perinuclear viral replication compartment. Combined fluorescence in situ hybridization-based confocal imaging, in vitro binding assays, and immunoprecipitation coupled to RT-qPCR showed that IGF2BP2 directly interacts with ZIKV vRNA 3’ nontranslated region. Using ZIKV sub-genomic replicons and a replication-independent vRO induction system, we demonstrated that IGF2BP2 knockdown impairs de novo vRO biogenesis and, consistently, vRNA synthesis. Finally, the analysis of immunopurified IGF2BP2 complex using quantitative mass spectrometry and RT-qPCR revealed that ZIKV infection alters the protein and RNA interactomes of IGF2BP2. Altogether, our data support that ZIKV hijacks and remodels the IGF2BP2 ribonucleoprotein complex to regulate vRO biogenesis and vRNA neosynthesis.