Structural rearrangement of amyloid-β upon inhibitor binding suppresses formation of Alzheimer disease related oligomers

Abstract

The formation of oligomers of the amyloid-β peptide plays a key role in the onset of Alzheimer's disease. We describe herein the investigation of disease-relevant small amyloid-β oligomers by mass spectrometry and ion mobility spectrometry, revealing functionally relevant structural attributes. In particular we can show that amyloid-β oligomers develop in two distinct arrangements leading to either neurotoxic oligomers and fibrils or non-toxic amorphous aggregates. Comprehending the key-attributes responsible for those pathways on a molecular level is a pre-requisite to specifically target the peptide's tertiary structure with the aim to promote the emergence of non-toxic aggregates. Here we show for two fibril inhibiting ligands, an ionic molecular tweezer and a hydrophobic peptide that despite their different interaction mechanisms, the suppression of the fibril pathway can be deduced from the disappearance of the corresponding structure of the first amyloid-β oligomers.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Tobias Lieblein

    Institute of Physical and Theoretical Chemistry, Goethe-University, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6497-1733
  2. Rene Zangl

    Institute of Physical and Theoretical Chemistry, Goethe-University, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Janosch Martin

    Institute of Physical and Theoretical Chemistry, Goethe-University, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Jan Hoffmann

    Institute of Physical and Theoretical Chemistry, Goethe-University, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Marie J Hutchison

    Center for Biomolecular Magnetic Resonance, Goethe-University, Frankfurt am Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Tina Stark

    Institute for Organic Chemistry and Chemical Biology, Goethe-University, Frankfurt am Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Elke Stirnal

    Center for Biomolecular Magnetic Resonance, Goethe-University, Frankfurt am Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Thomas Schrader

    Department of Chemistry, University of Duisburg-Essen, Essen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Harald Schwalbe

    Center for Biomolecular Magnetic Resonance, Goethe-University, Frankfurt am Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Nina Morgner

    Institute of Physical and Theoretical Chemistry, Goethe-University, Frankfurt, Germany
    For correspondence
    morgner@chemie.uni-frankfurt.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1872-490X

Funding

Deutsche Forschungsgemeinschaft (GRK1986)

  • Nina Morgner

LOEWE Schwerpunkt from State of Hesse (GLUE)

  • Nina Morgner

Cluster of Excellence Frankfurt (MacromolecularComplexes)

  • Nina Morgner

Deutsche Forschungsgemeinschaft (Heisenbergprofessorship)

  • Nina Morgner

Deutsche Forschungsgemeinschaft (CRC1093)

  • Thomas Schrader

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. John Kuriyan, University of California, Berkeley, United States

Version history

  1. Received: May 25, 2020
  2. Accepted: October 22, 2020
  3. Accepted Manuscript published: October 23, 2020 (version 1)
  4. Version of Record published: November 23, 2020 (version 2)

Copyright

© 2020, Lieblein et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,801
    views
  • 299
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tobias Lieblein
  2. Rene Zangl
  3. Janosch Martin
  4. Jan Hoffmann
  5. Marie J Hutchison
  6. Tina Stark
  7. Elke Stirnal
  8. Thomas Schrader
  9. Harald Schwalbe
  10. Nina Morgner
(2020)
Structural rearrangement of amyloid-β upon inhibitor binding suppresses formation of Alzheimer disease related oligomers
eLife 9:e59306.
https://doi.org/10.7554/eLife.59306

Share this article

https://doi.org/10.7554/eLife.59306

Further reading

    1. Neuroscience
    Alastair MacDonald, Alina Hebling ... Kevin Yackle
    Research Article

    Intonation in speech is the control of vocal pitch to layer expressive meaning to communication, like increasing pitch to indicate a question. Also, stereotyped patterns of pitch are used to create distinct sounds with different denotations, like in tonal languages and, perhaps, the 10 sounds in the murine lexicon. A basic tone is created by exhalation through a constricted laryngeal voice box, and it is thought that more complex utterances are produced solely by dynamic changes in laryngeal tension. But perhaps, the shifting pitch also results from altering the swiftness of exhalation. Consistent with the latter model, we describe that intonation in most vocalization types follows deviations in exhalation that appear to be generated by the re-activation of the cardinal breathing muscle for inspiration. We also show that the brainstem vocalization central pattern generator, the iRO, can create this breath pattern. Consequently, ectopic activation of the iRO not only induces phonation, but also the pitch patterns that compose most of the vocalizations in the murine lexicon. These results reveal a novel brainstem mechanism for intonation.

    1. Neuroscience
    Anna K Gillespie, Daniela Astudillo Maya ... Loren M Frank
    Research Article

    Hippocampal replay – the time-compressed, sequential reactivation of ensembles of neurons related to past experience – is a key neural mechanism of memory consolidation. Replay typically coincides with a characteristic pattern of local field potential activity, the sharp-wave ripple (SWR). Reduced SWR rates are associated with cognitive impairment in multiple models of neurodegenerative disease, suggesting that a clinically viable intervention to promote SWRs and replay would prove beneficial. We therefore developed a neurofeedback paradigm for rat subjects in which SWR detection triggered rapid positive feedback in the context of a memory-dependent task. This training protocol increased the prevalence of task-relevant replay during the targeted neurofeedback period by changing the temporal dynamics of SWR occurrence. This increase was also associated with neural and behavioral forms of compensation after the targeted period. These findings reveal short-timescale regulation of SWR generation and demonstrate that neurofeedback is an effective strategy for modulating hippocampal replay.