1. Immunology and Inflammation
Download icon

Cytomegalovirus restricts ICOSL expression on antigen presenting cells disabling T cell co-stimulation and contributing to immune evasion

  1. Guillem Angulo
  2. Jelena Zeleznjak
  3. Pablo Martínez-Vicente
  4. Joan Puñet-Ortiz
  5. Hartmut Hengel
  6. Martin Messerle
  7. Annette Oxenius
  8. Stipan Jonjic
  9. Astrid Krmpotic
  10. Pablo Engel
  11. Ana Angulo  Is a corresponding author
  1. University of Barcelona, Spain
  2. University of Rijeka, Croatia
  3. Albert-Ludwigs-Universität Freiburg, Faculty of Medicine, Germany
  4. Hannover Medical School, Germany
  5. ETH Zürich, Switzerland
  6. Faculty of Medicine and Health Sciences, University of Barcelona, Spain
Research Article
  • Cited 0
  • Views 473
  • Annotations
Cite this article as: eLife 2021;10:e59350 doi: 10.7554/eLife.59350

Abstract

Viral infections are controlled, and very often cleared, by activated T lymphocytes. The inducible co-stimulator (ICOS) mediates its functions by binding to its ligand ICOSL, enhancing T-cell activation and optimal germinal center (GC) formation. Here, we show that ICOSL is heavily downmodulated during infection of antigen presenting cells by different herpesviruses. We found that, in murine cytomegalovirus (MCMV), the immunoevasin m138/fcr-1 physically interacts with ICOSL, impeding its maturation and promoting its lysosomal degradation. This viral protein counteracts T-cell responses, in an ICOS-dependent manner, and limits virus control during the acute MCMV infection. Additionally, we report that blockade of ICOSL in MCMV-infected mice critically regulates the production of MCMV-specific antibodies due to a reduction of T follicular helper and GC B cells. Altogether, these findings reveal a novel mechanism evolved by MCMV to counteract adaptive immune surveillance, and demonstrates a role of the ICOS:ICOSL axis in the host defense against herpesviruses.

Article and author information

Author details

  1. Guillem Angulo

    Biomedical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7086-9754
  2. Jelena Zeleznjak

    Center for Proteomics / Department of Histology and Embryology, University of Rijeka, Rijeka, Croatia
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6619-3675
  3. Pablo Martínez-Vicente

    Biomedical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
    Competing interests
    No competing interests declared.
  4. Joan Puñet-Ortiz

    Biomedical Sciences, University of Medicine, University of Barcelona, Barcelona, Spain
    Competing interests
    No competing interests declared.
  5. Hartmut Hengel

    Institute of Virology, Albert-Ludwigs-Universität Freiburg, Faculty of Medicine, Freiburg, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3482-816X
  6. Martin Messerle

    Institute of Virology, Hannover Medical School, Hannover, Germany
    Competing interests
    No competing interests declared.
  7. Annette Oxenius

    Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
    Competing interests
    No competing interests declared.
  8. Stipan Jonjic

    Deparment of Histology and Embryology, University of Rijeka, Rijeka, Croatia
    Competing interests
    Stipan Jonjic, Reviewing editor, eLife.
  9. Astrid Krmpotic

    Department of Histology and Embryology, University of Rijeka, Rijeka, Croatia
    Competing interests
    No competing interests declared.
  10. Pablo Engel

    Immunology Unit, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
    Competing interests
    No competing interests declared.
  11. Ana Angulo

    Biomedical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
    For correspondence
    aangulo@ub.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5792-1164

Funding

Ministerio de Economía y Competitividad (SAF 2017-87688)

  • Ana Angulo

Ministerio de Economía y Competitividad (RTI2018-094440-B-I00)

  • Pablo Engel

European Regional Development Fund (KK.01.1.1.01.0006)

  • Stipan Jonjic

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures involving animals and their care were approved (protocol number CEEA 308/12) by the Ethics Committee of the University of Barcelona (Spain) and the Animal Welfare Committee at the University of Rijeka (Croatia) and were conducted in compliance with institutional guidelines as well as with national (Generalitat de Catalunya decree 214/1997, DOGC 2450) and international (Guide for the Care and Use of Laboratory Animals, National Institutes of Health, 85-23, 1985) laws and policies.

Human subjects: Human blood was obtained from healthy volunteer donors through the Blood and Tissue Bank of the Catalan Department of Health (Barcelona, Spain). Utilization of blood products for the experiments conducted was approved by the Ethics Committee of the Hospital Clinic of Barcelona (Barcelona, Spain), and according to the principles of the Declaration of Helsinki.

Reviewing Editor

  1. John W Schoggins, University of Texas Southwestern Medical Center, United States

Publication history

  1. Received: May 27, 2020
  2. Accepted: January 15, 2021
  3. Accepted Manuscript published: January 18, 2021 (version 1)
  4. Version of Record published: January 27, 2021 (version 2)
  5. Version of Record updated: February 25, 2021 (version 3)

Copyright

© 2021, Angulo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 473
    Page views
  • 91
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Philipp Kolb et al.
    Research Article Updated

    Human cytomegalovirus (HCMV) is endowed with multiple highly sophisticated immune evasion strategies. This includes the evasion from antibody mediated immune control by counteracting host Fc-gamma receptor (FcγR) mediated immune control mechanisms such as antibody-dependent cellular cytotoxicity (ADCC). We have previously shown that HCMV avoids FcγR activation by concomitant expression of the viral Fc-gamma-binding glycoproteins (vFcγRs) gp34 and gp68. We now show that gp34 and gp68 bind IgG simultaneously at topologically different Fcγ sites and achieve efficient antagonization of host FcγR activation by distinct but synergizing mechanisms. While gp34 enhances immune complex internalization, gp68 acts as inhibitor of host FcγR binding to immune complexes. In doing so, gp68 induces Fcγ accessibility to gp34 and simultaneously limits host FcγR recognition. The synergy of gp34 and gp68 is compelled by the interfering influence of excessive non-immune IgG ligands and highlights conformational changes within the IgG globular chains critical for antibody effector function.

    1. Cell Biology
    2. Immunology and Inflammation
    Shannon M Walsh et al.
    Tools and Resources

    The detection of foreign antigens in vivo has relied on fluorescent conjugation or indirect read-outs such as antigen presentation. In our studies, we found that these widely used techniques had several technical limitations that have precluded a complete picture of antigen trafficking or retention across lymph node cell types. To address these limitations, we developed a 'molecular tracking device' to follow the distribution, acquisition, and retention of antigen in the lymph node. Utilizing an antigen conjugated to a nuclease-resistant DNA tag, acting as a combined antigen-adjuvant conjugate, and single-cell mRNA sequencing we quantified antigen abundance in lymph node. Variable antigen levels enabled the identification of caveolar endocytosis as a mechanism of antigen acquisition or retention in lymphatic endothelial cells. Thus, these molecular tracking devices enable new approaches to study dynamic tissue dissemination of antigen-adjuvant conjugates and identify new mechanisms of antigen acquisition and retention at cellular resolution in vivo.