Cytomegalovirus restricts ICOSL expression on antigen presenting cells disabling T cell co-stimulation and contributing to immune evasion

  1. Guillem Angulo
  2. Jelena Zeleznjak
  3. Pablo Martínez-Vicente
  4. Joan Puñet-Ortiz
  5. Hartmut Hengel
  6. Martin Messerle
  7. Annette Oxenius
  8. Stipan Jonjic
  9. Astrid Krmpotic
  10. Pablo Engel
  11. Ana Angulo  Is a corresponding author
  1. University of Barcelona, Spain
  2. University of Rijeka, Croatia
  3. Albert-Ludwigs-Universität Freiburg, Faculty of Medicine, Germany
  4. Hannover Medical School, Germany
  5. ETH Zürich, Switzerland
  6. Faculty of Medicine and Health Sciences, University of Barcelona, Spain

Abstract

Viral infections are controlled, and very often cleared, by activated T lymphocytes. The inducible co-stimulator (ICOS) mediates its functions by binding to its ligand ICOSL, enhancing T-cell activation and optimal germinal center (GC) formation. Here, we show that ICOSL is heavily downmodulated during infection of antigen presenting cells by different herpesviruses. We found that, in murine cytomegalovirus (MCMV), the immunoevasin m138/fcr-1 physically interacts with ICOSL, impeding its maturation and promoting its lysosomal degradation. This viral protein counteracts T-cell responses, in an ICOS-dependent manner, and limits virus control during the acute MCMV infection. Additionally, we report that blockade of ICOSL in MCMV-infected mice critically regulates the production of MCMV-specific antibodies due to a reduction of T follicular helper and GC B cells. Altogether, these findings reveal a novel mechanism evolved by MCMV to counteract adaptive immune surveillance, and demonstrates a role of the ICOS:ICOSL axis in the host defense against herpesviruses.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Guillem Angulo

    Biomedical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7086-9754
  2. Jelena Zeleznjak

    Center for Proteomics / Department of Histology and Embryology, University of Rijeka, Rijeka, Croatia
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6619-3675
  3. Pablo Martínez-Vicente

    Biomedical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
    Competing interests
    No competing interests declared.
  4. Joan Puñet-Ortiz

    Biomedical Sciences, University of Medicine, University of Barcelona, Barcelona, Spain
    Competing interests
    No competing interests declared.
  5. Hartmut Hengel

    Institute of Virology, Albert-Ludwigs-Universität Freiburg, Faculty of Medicine, Freiburg, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3482-816X
  6. Martin Messerle

    Institute of Virology, Hannover Medical School, Hannover, Germany
    Competing interests
    No competing interests declared.
  7. Annette Oxenius

    Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
    Competing interests
    No competing interests declared.
  8. Stipan Jonjic

    Deparment of Histology and Embryology, University of Rijeka, Rijeka, Croatia
    Competing interests
    Stipan Jonjic, Reviewing editor, eLife.
  9. Astrid Krmpotic

    Department of Histology and Embryology, University of Rijeka, Rijeka, Croatia
    Competing interests
    No competing interests declared.
  10. Pablo Engel

    Immunology Unit, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
    Competing interests
    No competing interests declared.
  11. Ana Angulo

    Biomedical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
    For correspondence
    aangulo@ub.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5792-1164

Funding

Ministerio de Economía y Competitividad (SAF 2017-87688)

  • Ana Angulo

Ministerio de Economía y Competitividad (RTI2018-094440-B-I00)

  • Pablo Engel

European Regional Development Fund (KK.01.1.1.01.0006)

  • Stipan Jonjic

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures involving animals and their care were approved (protocol number CEEA 308/12) by the Ethics Committee of the University of Barcelona (Spain) and the Animal Welfare Committee at the University of Rijeka (Croatia) and were conducted in compliance with institutional guidelines as well as with national (Generalitat de Catalunya decree 214/1997, DOGC 2450) and international (Guide for the Care and Use of Laboratory Animals, National Institutes of Health, 85-23, 1985) laws and policies.

Human subjects: Human blood was obtained from healthy volunteer donors through the Blood and Tissue Bank of the Catalan Department of Health (Barcelona, Spain). Utilization of blood products for the experiments conducted was approved by the Ethics Committee of the Hospital Clinic of Barcelona (Barcelona, Spain), and according to the principles of the Declaration of Helsinki.

Copyright

© 2021, Angulo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,221
    views
  • 187
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Guillem Angulo
  2. Jelena Zeleznjak
  3. Pablo Martínez-Vicente
  4. Joan Puñet-Ortiz
  5. Hartmut Hengel
  6. Martin Messerle
  7. Annette Oxenius
  8. Stipan Jonjic
  9. Astrid Krmpotic
  10. Pablo Engel
  11. Ana Angulo
(2021)
Cytomegalovirus restricts ICOSL expression on antigen presenting cells disabling T cell co-stimulation and contributing to immune evasion
eLife 10:e59350.
https://doi.org/10.7554/eLife.59350

Share this article

https://doi.org/10.7554/eLife.59350

Further reading

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Patsy R Tomlinson, Rachel G Knox ... Robert K Semple
    Research Article

    PIK3R1 encodes three regulatory subunits of class IA phosphoinositide 3-kinase (PI3K), each associating with any of three catalytic subunits, namely p110α, p110β, or p110δ. Constitutional PIK3R1 mutations cause diseases with a genotype-phenotype relationship not yet fully explained: heterozygous loss-of-function mutations cause SHORT syndrome, featuring insulin resistance and short stature attributed to reduced p110α function, while heterozygous activating mutations cause immunodeficiency, attributed to p110δ activation and known as APDS2. Surprisingly, APDS2 patients do not show features of p110α hyperactivation, but do commonly have SHORT syndrome-like features, suggesting p110α hypofunction. We sought to investigate this. In dermal fibroblasts from an APDS2 patient, we found no increased PI3K signalling, with p110δ expression markedly reduced. In preadipocytes, the APDS2 variant was potently dominant negative, associating with Irs1 and Irs2 but failing to heterodimerise with p110α. This attenuation of p110α signalling by a p110δ-activating PIK3R1 variant potentially explains co-incidence of gain-of-function and loss-of-function PIK3R1 phenotypes.

    1. Immunology and Inflammation
    Shih-Wen Huang, Yein-Gei Lai ... Nan-Shih Liao
    Research Article

    Natural killer (NK) cells can control metastasis through cytotoxicity and IFN-γ production independently of T cells in experimental metastasis mouse models. The inverse correlation between NK activity and metastasis incidence supports a critical role for NK cells in human metastatic surveillance. However, autologous NK cell therapy has shown limited benefit in treating patients with metastatic solid tumors. Using a spontaneous metastasis mouse model of MHC-I+ breast cancer, we found that transfer of IL-15/IL-12-conditioned syngeneic NK cells after primary tumor resection promoted long-term survival of mice with low metastatic burden and induced a tumor-specific protective T cell response that is essential for the therapeutic effect. Furthermore, NK cell transfer augments activation of conventional dendritic cells (cDCs), Foxp3-CD4+ T cells and stem cell-like CD8+ T cells in metastatic lungs, to which IFN-γ of the transferred NK cells contributes significantly. These results imply direct interactions between transferred NK cells and endogenous cDCs to enhance T cell activation. We conducted an investigator-initiated clinical trial of autologous NK cell therapy in six patients with advanced cancer and observed that the NK cell therapy was safe and showed signs of effectiveness. These findings indicate that autologous NK cell therapy is effective in treating established low burden metastases of MHC-I+ tumor cells by activating the cDC-T cell axis at metastatic sites.