Cytomegalovirus restricts ICOSL expression on antigen presenting cells disabling T cell co-stimulation and contributing to immune evasion

  1. Guillem Angulo
  2. Jelena Zeleznjak
  3. Pablo Martínez-Vicente
  4. Joan Puñet-Ortiz
  5. Hartmut Hengel
  6. Martin Messerle
  7. Annette Oxenius
  8. Stipan Jonjic
  9. Astrid Krmpotic
  10. Pablo Engel
  11. Ana Angulo  Is a corresponding author
  1. University of Barcelona, Spain
  2. University of Rijeka, Croatia
  3. Albert-Ludwigs-Universität Freiburg, Faculty of Medicine, Germany
  4. Hannover Medical School, Germany
  5. ETH Zürich, Switzerland
  6. Faculty of Medicine and Health Sciences, University of Barcelona, Spain

Abstract

Viral infections are controlled, and very often cleared, by activated T lymphocytes. The inducible co-stimulator (ICOS) mediates its functions by binding to its ligand ICOSL, enhancing T-cell activation and optimal germinal center (GC) formation. Here, we show that ICOSL is heavily downmodulated during infection of antigen presenting cells by different herpesviruses. We found that, in murine cytomegalovirus (MCMV), the immunoevasin m138/fcr-1 physically interacts with ICOSL, impeding its maturation and promoting its lysosomal degradation. This viral protein counteracts T-cell responses, in an ICOS-dependent manner, and limits virus control during the acute MCMV infection. Additionally, we report that blockade of ICOSL in MCMV-infected mice critically regulates the production of MCMV-specific antibodies due to a reduction of T follicular helper and GC B cells. Altogether, these findings reveal a novel mechanism evolved by MCMV to counteract adaptive immune surveillance, and demonstrates a role of the ICOS:ICOSL axis in the host defense against herpesviruses.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Guillem Angulo

    Biomedical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7086-9754
  2. Jelena Zeleznjak

    Center for Proteomics / Department of Histology and Embryology, University of Rijeka, Rijeka, Croatia
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6619-3675
  3. Pablo Martínez-Vicente

    Biomedical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
    Competing interests
    No competing interests declared.
  4. Joan Puñet-Ortiz

    Biomedical Sciences, University of Medicine, University of Barcelona, Barcelona, Spain
    Competing interests
    No competing interests declared.
  5. Hartmut Hengel

    Institute of Virology, Albert-Ludwigs-Universität Freiburg, Faculty of Medicine, Freiburg, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3482-816X
  6. Martin Messerle

    Institute of Virology, Hannover Medical School, Hannover, Germany
    Competing interests
    No competing interests declared.
  7. Annette Oxenius

    Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
    Competing interests
    No competing interests declared.
  8. Stipan Jonjic

    Deparment of Histology and Embryology, University of Rijeka, Rijeka, Croatia
    Competing interests
    Stipan Jonjic, Reviewing editor, eLife.
  9. Astrid Krmpotic

    Department of Histology and Embryology, University of Rijeka, Rijeka, Croatia
    Competing interests
    No competing interests declared.
  10. Pablo Engel

    Immunology Unit, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
    Competing interests
    No competing interests declared.
  11. Ana Angulo

    Biomedical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
    For correspondence
    aangulo@ub.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5792-1164

Funding

Ministerio de Economía y Competitividad (SAF 2017-87688)

  • Ana Angulo

Ministerio de Economía y Competitividad (RTI2018-094440-B-I00)

  • Pablo Engel

European Regional Development Fund (KK.01.1.1.01.0006)

  • Stipan Jonjic

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures involving animals and their care were approved (protocol number CEEA 308/12) by the Ethics Committee of the University of Barcelona (Spain) and the Animal Welfare Committee at the University of Rijeka (Croatia) and were conducted in compliance with institutional guidelines as well as with national (Generalitat de Catalunya decree 214/1997, DOGC 2450) and international (Guide for the Care and Use of Laboratory Animals, National Institutes of Health, 85-23, 1985) laws and policies.

Human subjects: Human blood was obtained from healthy volunteer donors through the Blood and Tissue Bank of the Catalan Department of Health (Barcelona, Spain). Utilization of blood products for the experiments conducted was approved by the Ethics Committee of the Hospital Clinic of Barcelona (Barcelona, Spain), and according to the principles of the Declaration of Helsinki.

Copyright

© 2021, Angulo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,216
    views
  • 185
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Guillem Angulo
  2. Jelena Zeleznjak
  3. Pablo Martínez-Vicente
  4. Joan Puñet-Ortiz
  5. Hartmut Hengel
  6. Martin Messerle
  7. Annette Oxenius
  8. Stipan Jonjic
  9. Astrid Krmpotic
  10. Pablo Engel
  11. Ana Angulo
(2021)
Cytomegalovirus restricts ICOSL expression on antigen presenting cells disabling T cell co-stimulation and contributing to immune evasion
eLife 10:e59350.
https://doi.org/10.7554/eLife.59350

Share this article

https://doi.org/10.7554/eLife.59350

Further reading

    1. Computational and Systems Biology
    2. Immunology and Inflammation
    Lucia Csepregi, Kenneth Hoehn ... Sai T Reddy
    Research Article

    Diverse antibody repertoires spanning multiple lymphoid organs (i.e., bone marrow, spleen, lymph nodes) form the foundation of protective humoral immunity. Changes in their composition across lymphoid organs are a consequence of B-cell selection and migration events leading to a highly dynamic and unique physiological landscape of antibody repertoires upon antigenic challenge (e.g., vaccination). However, to what extent B cells encoding identical or similar antibody sequences (clones) are distributed across multiple lymphoid organs and how this is shaped by the strength of a humoral response remains largely unexplored. Here, we performed an in-depth systems analysis of antibody repertoires across multiple distinct lymphoid organs of immunized mice and discovered that organ-specific antibody repertoire features (i.e., germline V-gene usage and clonal expansion profiles) equilibrated upon a strong humoral response (multiple immunizations and high serum titers). This resulted in a surprisingly high degree of repertoire consolidation, characterized by highly connected and overlapping B-cell clones across multiple lymphoid organs. Finally, we revealed distinct physiological axes indicating clonal migrations and showed that antibody repertoire consolidation directly correlated with antigen specificity. Our study uncovered how a strong humoral response resulted in a more uniform but redundant physiological landscape of antibody repertoires, indicating that increases in antibody serum titers were a result of synergistic contributions from antigen-specific B-cell clones distributed across multiple lymphoid organs. Our findings provide valuable insights for the assessment and design of vaccine strategies.

    1. Immunology and Inflammation
    Yue Yang, Bin Huang ... Fangfang Zhang
    Research Article Updated

    Adipose tissue inflammation is now considered to be a key process underlying metabolic diseases in obese individuals. However, it remains unclear how adipose inflammation is initiated and maintained or the mechanism by which inflammation develops. We found that microRNA-802 (Mir802) expression in adipose tissue is progressively increased with the development of dietary obesity in obese mice and humans. The increasing trend of Mir802 preceded the accumulation of macrophages. Adipose tissue-specific knockout of Mir802 lowered macrophage infiltration and ameliorated systemic insulin resistance. Conversely, the specific overexpression of Mir802 in adipose tissue aggravated adipose inflammation in mice fed a high-fat diet. Mechanistically, Mir802 activates noncanonical and canonical NF-κB pathways by targeting its negative regulator, TRAF3. Next, NF-κB orchestrated the expression of chemokines and SREBP1, leading to strong recruitment and M1-like polarization of macrophages. Our findings indicate that Mir802 endows adipose tissue with the ability to recruit and polarize macrophages, which underscores Mir802 as an innovative and attractive candidate for miRNA-based immune therapy for adipose inflammation.