Alstrom syndrome gene is a stem cell-specific regulator of centriole duplication in the Drosophila testis

  1. Cuie Chen
  2. Yukiko M Yamashita  Is a corresponding author
  1. University of Michigan, United States
  2. Whitehead Institute/MIT, United States

Abstract

Asymmetrically dividing stem cells often show asymmetric behavior of the mother versus daughter centrosomes, whereby the self-renewing stem cell selectively inherits the mother or daughter centrosome. Although the asymmetric centrosome behavior is widely conserved, its biological significance remains largely unclear. Here we show that Alms1a, a Drosophila homolog of the human ciliopathy gene Alstrom syndrome, is enriched on the mother centrosome in Drosophila male germline stem cells (GSCs). Depletion of alms1a in GSCs, but not in differentiating germ cells, results in rapid loss of centrosomes due to a failure in daughter centriole duplication, suggesting that Alms1a has a stem cell-specific function in centrosome duplication. Alms1a interacts with Sak/Plk4, a critical regulator of centriole duplication, more strongly at the GSC mother centrosome, further supporting Alms1a's unique role in GSCs. Our results begin to reveal the unique regulation of stem cell centrosomes that may contribute to asymmetric stem cell divisions.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Cuie Chen

    Life Sciences Institute, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5498-9753
  2. Yukiko M Yamashita

    Biology, Whitehead Institute/MIT, Cambridge, United States
    For correspondence
    yukikomy@wi.mit.edu
    Competing interests
    Yukiko M Yamashita, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5541-0216

Funding

Howard Hughes Medical Institute

  • Yukiko M Yamashita

National Institute of General Medical Sciences (R01GM118308)

  • Yukiko M Yamashita

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Anna Akhmanova, Utrecht University, Netherlands

Version history

  1. Received: May 27, 2020
  2. Accepted: September 22, 2020
  3. Accepted Manuscript published: September 23, 2020 (version 1)
  4. Version of Record published: October 5, 2020 (version 2)

Copyright

© 2020, Chen & Yamashita

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,039
    Page views
  • 263
    Downloads
  • 7
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Cuie Chen
  2. Yukiko M Yamashita
(2020)
Alstrom syndrome gene is a stem cell-specific regulator of centriole duplication in the Drosophila testis
eLife 9:e59368.
https://doi.org/10.7554/eLife.59368

Share this article

https://doi.org/10.7554/eLife.59368

Further reading

    1. Cell Biology
    2. Physics of Living Systems
    Jorge de-Carvalho, Sham Tlili ... Ivo A Telley
    Research Article

    Microtubule asters are essential in localizing the action of microtubules in processes including mitosis and organelle positioning. In large cells, such as the one-cell sea urchin embryo, aster dynamics are dominated by hydrodynamic pulling forces. However, in systems with more densely positioned nuclei such as the early Drosophila embryo, which packs around 6000 nuclei within the syncytium in a crystalline-like order, it is unclear what processes dominate aster dynamics. Here, we take advantage of a cell cycle regulation Drosophila mutant to generate embryos with multiple asters, independent from nuclei. We use an ex vivo assay to further simplify this biological system to explore the forces generated by and between asters. Through live imaging, drug and optical perturbations, and theoretical modeling, we demonstrate that these asters likely generate an effective pushing force over short distances.

    1. Cell Biology
    2. Genetics and Genomics
    Guanxiong Yan, Yang Ma ... Wei Miao
    Research Article

    Although most species have two sexes, multisexual (or multi-mating type) species are also widespread. However, it is unclear how mating-type recognition is achieved at the molecular level in multisexual species. The unicellular ciliate Tetrahymena thermophila has seven mating types, which are determined by the MTA and MTB proteins. In this study, we found that both proteins are essential for cells to send or receive complete mating-type information, and transmission of the mating-type signal requires both proteins to be expressed in the same cell. We found that MTA and MTB form a mating-type recognition complex that localizes to the plasma membrane, but not to the cilia. Stimulation experiments showed that the mating-type-specific regions of MTA and MTB mediate both self- and non-self-recognition, indicating that T. thermophila uses a dual approach to achieve mating-type recognition. Our results suggest that MTA and MTB form an elaborate multifunctional protein complex that can identify cells of both self and non-self mating types in order to inhibit or activate mating, respectively.