Forced choices reveal a trade-off between cognitive effort and physical pain

  1. Todd A Vogel  Is a corresponding author
  2. Zachary M Savelson
  3. A Ross Otto
  4. Mathieu Roy  Is a corresponding author
  1. McGill University, Canada
  2. Carleton University, Canada

Abstract

Cognitive effort is described as aversive, and people will generally avoid it when possible. This aversion to effort is believed to arise from a cost–benefit analysis of the actions available. The comparison of cognitive effort against other primary aversive experiences, however, remains relatively unexplored. Here, we offered participants choices between performing a cognitively demanding task or experiencing thermal pain. We found that cognitive effort can be traded off for physical pain and that people generally avoid exerting high levels of cognitive effort. We also used computational modelling to examine the aversive subjective value of effort and its effects on response behaviours. Applying this model to decision times revealed asymmetric effects of effort and pain, suggesting that cognitive effort may not share the same basic influences on avoidance behaviour as more primary aversive stimuli such as physical pain.

Data availability

All data analyzed for this study can be found on OSF (https://osf.io/n4cht/).

The following data sets were generated

Article and author information

Author details

  1. Todd A Vogel

    Department of Psychology, McGill University, Montreal, Canada
    For correspondence
    todd.vogel@mail.mcgill.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0895-3845
  2. Zachary M Savelson

    Institute of Cognitive Science, Carleton University, Ottawa, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. A Ross Otto

    Department of Psychology, McGill University, Quebec, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9997-1901
  4. Mathieu Roy

    Department of Psychology, McGill University, Montreal, Canada
    For correspondence
    mathieu.roy3@mcgill.ca
    Competing interests
    The authors declare that no competing interests exist.

Funding

Natural Sciences and Engineering Research Council of Canada (RGPIN-2017-03918)

  • A Ross Otto

Fonds de recherche du Québec – Nature et technologies (2018-NC-204806)

  • A Ross Otto

Natural Sciences and Engineering Research Council of Canada (RGPIN-2016-06682)

  • Mathieu Roy

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jonathan Roiser, University College London, United Kingdom

Ethics

Human subjects: Informed written consent was obtained from all participants and the study was approved by the McGill University Research Ethics Board (REB File # 247-1117).

Version history

  1. Received: May 28, 2020
  2. Accepted: November 16, 2020
  3. Accepted Manuscript published: November 17, 2020 (version 1)
  4. Version of Record published: December 3, 2020 (version 2)

Copyright

© 2020, Vogel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 11,373
    views
  • 651
    downloads
  • 31
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Todd A Vogel
  2. Zachary M Savelson
  3. A Ross Otto
  4. Mathieu Roy
(2020)
Forced choices reveal a trade-off between cognitive effort and physical pain
eLife 9:e59410.
https://doi.org/10.7554/eLife.59410

Share this article

https://doi.org/10.7554/eLife.59410

Further reading

    1. Neuroscience
    Evan D Vickers, David A McCormick
    Tools and Resources

    The flow of neural activity across the neocortex during active sensory discrimination is constrained by task-specific cognitive demands, movements, and internal states. During behavior, the brain appears to sample from a broad repertoire of activation motifs. Understanding how these patterns of local and global activity are selected in relation to both spontaneous and task-dependent behavior requires in-depth study of densely sampled activity at single neuron resolution across large regions of cortex. In a significant advance toward this goal, we developed procedures to record mesoscale 2-photon Ca2+ imaging data from two novel in vivo preparations that, between them, allow for simultaneous access to nearly all 0f the mouse dorsal and lateral neocortex. As a proof of principle, we aligned neural activity with both behavioral primitives and high-level motifs to reveal the existence of large populations of neurons that coordinated their activity across cortical areas with spontaneous changes in movement and/or arousal. The methods we detail here facilitate the identification and exploration of widespread, spatially heterogeneous neural ensembles whose activity is related to diverse aspects of behavior.

    1. Neuroscience
    Simon Kern, Juliane Nagel ... Gordon B Feld
    Research Article

    Declarative memory retrieval is thought to involve reinstatement of neuronal activity patterns elicited and encoded during a prior learning episode. Furthermore, it is suggested that two mechanisms operate during reinstatement, dependent on task demands: individual memory items can be reactivated simultaneously as a clustered occurrence or, alternatively, replayed sequentially as temporally separate instances. In the current study, participants learned associations between images that were embedded in a directed graph network and retained this information over a brief 8 min consolidation period. During a subsequent cued recall session, participants retrieved the learned information while undergoing magnetoencephalographic recording. Using a trained stimulus decoder, we found evidence for clustered reactivation of learned material. Reactivation strength of individual items during clustered reactivation decreased as a function of increasing graph distance, an ordering present solely for successful retrieval but not for retrieval failure. In line with previous research, we found evidence that sequential replay was dependent on retrieval performance and was most evident in low performers. The results provide evidence for distinct performance-dependent retrieval mechanisms, with graded clustered reactivation emerging as a plausible mechanism to search within abstract cognitive maps.