1. Neuroscience
Download icon

Forced choices reveal a trade-off between cognitive effort and physical pain

  1. Todd A Vogel  Is a corresponding author
  2. Zachary M Savelson
  3. A Ross Otto
  4. Mathieu Roy  Is a corresponding author
  1. McGill University, Canada
  2. Carleton University, Canada
Research Article
  • Cited 2
  • Views 6,726
  • Annotations
Cite this article as: eLife 2020;9:e59410 doi: 10.7554/eLife.59410


Cognitive effort is described as aversive, and people will generally avoid it when possible. This aversion to effort is believed to arise from a cost–benefit analysis of the actions available. The comparison of cognitive effort against other primary aversive experiences, however, remains relatively unexplored. Here, we offered participants choices between performing a cognitively demanding task or experiencing thermal pain. We found that cognitive effort can be traded off for physical pain and that people generally avoid exerting high levels of cognitive effort. We also used computational modelling to examine the aversive subjective value of effort and its effects on response behaviours. Applying this model to decision times revealed asymmetric effects of effort and pain, suggesting that cognitive effort may not share the same basic influences on avoidance behaviour as more primary aversive stimuli such as physical pain.

Data availability

All data analyzed for this study can be found on OSF (https://osf.io/n4cht/).

The following data sets were generated

Article and author information

Author details

  1. Todd A Vogel

    Department of Psychology, McGill University, Montreal, Canada
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0895-3845
  2. Zachary M Savelson

    Institute of Cognitive Science, Carleton University, Ottawa, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. A Ross Otto

    Department of Psychology, McGill University, Quebec, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9997-1901
  4. Mathieu Roy

    Department of Psychology, McGill University, Montreal, Canada
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.


Natural Sciences and Engineering Research Council of Canada (RGPIN-2017-03918)

  • A Ross Otto

Fonds de recherche du Québec – Nature et technologies (2018-NC-204806)

  • A Ross Otto

Natural Sciences and Engineering Research Council of Canada (RGPIN-2016-06682)

  • Mathieu Roy

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.


Human subjects: Informed written consent was obtained from all participants and the study was approved by the McGill University Research Ethics Board (REB File # 247-1117).

Reviewing Editor

  1. Jonathan Roiser, University College London, United Kingdom

Publication history

  1. Received: May 28, 2020
  2. Accepted: November 16, 2020
  3. Accepted Manuscript published: November 17, 2020 (version 1)
  4. Version of Record published: December 3, 2020 (version 2)


© 2020, Vogel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 6,726
    Page views
  • 330
  • 2

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Anita E Autry et al.
    Research Article Updated

    While recent studies have uncovered dedicated neural pathways mediating the positive control of parenting, the regulation of infant-directed aggression and how it relates to adult-adult aggression is poorly understood. Here we show that urocortin-3 (Ucn3)-expressing neurons in the hypothalamic perifornical area (PeFAUcn3) are activated during infant-directed attacks in males and females, but not other behaviors. Functional manipulations of PeFAUcn3 neurons demonstrate the role of this population in the negative control of parenting in both sexes. PeFAUcn3 neurons receive input from areas associated with vomeronasal sensing, stress, and parenting, and send projections to hypothalamic and limbic areas. Optogenetic activation of PeFAUcn3 axon terminals in these regions triggers various aspects of infant-directed agonistic responses, such as neglect, repulsion, and aggression. Thus, PeFAUcn3 neurons emerge as a dedicated circuit component controlling infant-directed neglect and aggression, providing a new framework to understand the positive and negative regulation of parenting in health and disease.

    1. Neuroscience
    Maude Bouchard et al.
    Research Article Updated

    Sleep slow waves are studied for their role in brain plasticity, homeostatic regulation, and their changes during aging. Here, we address the possibility that two types of slow waves co-exist in humans. Thirty young and 29 older adults underwent a night of polysomnographic recordings. Using the transition frequency, slow waves with a slow transition (slow switchers) and those with a fast transition (fast switchers) were discovered. Slow switchers had a high electroencephalography (EEG) connectivity along their depolarization transition while fast switchers had a lower connectivity dynamics and dissipated faster during the night. Aging was associated with lower temporal dissipation of sleep pressure in slow and fast switchers and lower EEG connectivity at the microscale of the oscillations, suggesting a decreased flexibility in the connectivity network of older individuals. Our findings show that two different types of slow waves with possible distinct underlying functions coexist in the slow wave spectrum.