Multi-contrast anatomical subcortical structures parcellation

  1. Pierre-Louis Bazin  Is a corresponding author
  2. Anneke Alkemade
  3. Martijn J Mulder
  4. Amanda G Henry
  5. Birte U Forstmann
  1. University of Amsterdam, Netherlands
  2. Universiteit Utrecht, Netherlands
  3. Leiden University, Netherlands

Abstract

The human subcortex is comprised of more than 450 individual nuclei which lie deep in the brain. Due to their small size and close proximity, up until now only 7% have been depicted in standard MRI atlases. Thus, the human subcortex can largely be considered as terra incognita. Here we present a new open source parcellation algorithm to automatically map the subcortex. The new algorithm has been tested on 17 prominent subcortical structures based on a large quantitative MRI dataset at 7 Tesla. It has been carefully validated against expert human raters and previous methods, and can easily be extended to other subcortical structures and applied to any quantitative MRI dataset. In sum, we hope this novel parcellation algorithm will facilitate functional and structural neuroimaging research into small subcortical nuclei and help to chart terra incognita.

Data availability

The tool presented in this article is available in open source on Github (https://github.com/nighres/nighres). The atlases necessary to run the algorithm have been deposited on the University of Amsterdam FigShare (https://doi.org/10.21942/uva.12074175.v1 and https://doi.org/10.21942/uva.12301106.v2). A single sample subject data set has been deposited on the University of Amsterdam FigShare (https://doi.org/10.21942/uva.12280316.v2). All the measurements used to generate the figures included in the article have been deposited on the University of Amsterdam FigShare (https://doi.org/10.21942/uva.12452444.v1).

The following previously published data sets were used

Article and author information

Author details

  1. Pierre-Louis Bazin

    Psychology, University of Amsterdam, Amsterdam, Netherlands
    For correspondence
    pilou.bazin@uva.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0141-5510
  2. Anneke Alkemade

    IMCN, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3234-353X
  3. Martijn J Mulder

    Psychology, Universiteit Utrecht, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Amanda G Henry

    Archaeological Sciences, Leiden University, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2923-4199
  5. Birte U Forstmann

    Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1005-1675

Funding

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (VICI)

  • Birte U Forstmann

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (STW)

  • Anneke Alkemade
  • Birte U Forstmann

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Informed consent and consent to publish, including consent to publish anonymized imaging data, was obtained for all subjects. Ethical approval was obtained with the University of Amsterdam Faculty of Social and Behavioral Sciences LAB Ethics Review Board, with ERB number 2016-DP-6897.

Copyright

© 2020, Bazin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

Share this article

https://doi.org/10.7554/eLife.59430

Further reading

    1. Neuroscience
    Barbora Rehak Buckova, Charlotte Fraza ... Jaroslav Hlinka
    Tools and Resources

    Longitudinal neuroimaging studies offer valuable insight into brain development, ageing, and disease progression over time. However, prevailing analytical approaches rooted in our understanding of population variation are primarily tailored for cross-sectional studies. To fully leverage the potential of longitudinal neuroimaging, we need methodologies that account for the complex interplay between population variation and individual dynamics. We extend the normative modelling framework, which evaluates an individual’s position relative to population standards, to assess an individual’s longitudinal change compared to the population’s standard dynamics. Using normative models pre-trained on over 58,000 individuals, we introduce a quantitative metric termed ‘z-diff’ score, which quantifies a temporal change in individuals compared to a population standard. This approach offers advantages in flexibility in dataset size and ease of implementation. We applied this framework to a longitudinal dataset of 98 patients with early-stage schizophrenia who underwent MRI examinations shortly after diagnosis and 1 year later. Compared to cross-sectional analyses, showing global thinning of grey matter at the first visit, our method revealed a significant normalisation of grey matter thickness in the frontal lobe over time—an effect undetected by traditional longitudinal methods. Overall, our framework presents a flexible and effective methodology for analysing longitudinal neuroimaging data, providing insights into the progression of a disease that would otherwise be missed when using more traditional approaches.

    1. Neuroscience
    Lenia Amaral, Xiaosha Wang ... Ella Striem-Amit
    Research Article

    Research on brain plasticity, particularly in the context of deafness, consistently emphasizes the reorganization of the auditory cortex. But to what extent do all individuals with deafness show the same level of reorganization? To address this question, we examined the individual differences in functional connectivity (FC) from the deprived auditory cortex. Our findings demonstrate remarkable differentiation between individuals deriving from the absence of shared auditory experiences, resulting in heightened FC variability among deaf individuals, compared to more consistent FC in the hearing group. Notably, connectivity to language regions becomes more diverse across individuals with deafness. This does not stem from delayed language acquisition; it is found in deaf native signers, who are exposed to natural language since birth. However, comparing FC diversity between deaf native signers and deaf delayed signers, who were deprived of language in early development, we show that language experience also impacts individual differences, although to a more moderate extent. Overall, our research points out the intricate interplay between brain plasticity and individual differences, shedding light on the diverse ways reorganization manifests among individuals. It joins findings of increased connectivity diversity in blindness and highlights the importance of considering individual differences in personalized rehabilitation for sensory loss.