1. Developmental Biology
  2. Neuroscience
Download icon

Adrenergic activation modulates the signal from the Reissner fiber to cerebrospinal fluid-contacting neurons during development

  1. Yasmine Cantaut-Belarif
  2. Adeline Orts Del'Immagine
  3. Margot Penru
  4. Guillaume Pézeron
  5. Claire Wyart  Is a corresponding author
  6. Pierre-Luc Bardet  Is a corresponding author
  1. Hôpital Pitié-Salpêtrière, Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, France
  2. Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, France
  3. Museum National d'Histoire Naturelle, France
  4. Institut du Cerveau et la Moelle épinière, Hôpital Pitié-Salpêtrière, Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, France
Research Article
  • Cited 2
  • Views 795
  • Annotations
Cite this article as: eLife 2020;9:e59469 doi: 10.7554/eLife.59469

Abstract

The cerebrospinal fluid (CSF) contains an extracellular thread conserved in vertebrates, the Reissner fiber, which controls body axis morphogenesis in the zebrafish embryo. Yet, the signaling cascade originating from this fiber to ensure body axis straightening is not understood. Here, we explore the functional link between the Reissner fiber and undifferentiated spinal neurons contacting the CSF (CSF-cNs). First, we show that the Reissner fiber is required in vivo for the expression of urp2, a neuropeptide expressed in CSF-cNs. We show that the Reissner fiber is also required for embryonic calcium transients in these spinal neurons. Finally, we study how local adrenergic activation can substitute for the Reissner fiber-signaling pathway to CSF-cNs and rescue body axis morphogenesis. Our results show that the Reissner fiber acts on CSF-cNs and thereby contributes to establish body axis morphogenesis, and suggest it does so by controlling the availability of a chemical signal in the CSF.

Data availability

Data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for 5 figures. The raw RNA-seq data have been deposited in the ArrayExpress database at EMBL-EBI (www.ebi.ac.uk/arrayexpress) under accession number E-MTAB-9615.

The following data sets were generated

Article and author information

Author details

  1. Yasmine Cantaut-Belarif

    Institut du Cerveau et la Moelle épinière, Hôpital Pitié-Salpêtrière, Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Paris, France
    Competing interests
    No competing interests declared.
  2. Adeline Orts Del'Immagine

    Institut du Cerveau et la Moelle épinière, Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
    Competing interests
    No competing interests declared.
  3. Margot Penru

    Institut du Cerveau et la Moelle épinière, Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
    Competing interests
    No competing interests declared.
  4. Guillaume Pézeron

    Molecular Physiology and Adaptation UMR 7221 - CNRS, Museum National d'Histoire Naturelle, Paris, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1395-6397
  5. Claire Wyart

    Neurophysiology & Systems neuroscience, Institut du Cerveau et la Moelle épinière, Hôpital Pitié-Salpêtrière, Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Paris, France
    For correspondence
    claire.wyart@icm-institute.org
    Competing interests
    Claire Wyart, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1668-4975
  6. Pierre-Luc Bardet

    Institut du Cerveau et la Moelle épinière, Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
    For correspondence
    pierreluc.bardet@icm-institute.org
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1766-1318

Funding

Agence Nationale de la Recherche (ANR-10- IAIHU-06)

  • Yasmine Cantaut-Belarif
  • Margot Penru
  • Claire Wyart
  • Pierre-Luc Bardet

Agence Nationale de la Recherche (ANR-11-INBS-0011)

  • Yasmine Cantaut-Belarif
  • Adeline Orts Del'Immagine
  • Margot Penru
  • Claire Wyart
  • Pierre-Luc Bardet

HFSP (#RGP0063/2018)

  • Yasmine Cantaut-Belarif
  • Adeline Orts Del'Immagine
  • Claire Wyart
  • Pierre-Luc Bardet

Schlumberger Foundation (FSER/2017)

  • Claire Wyart

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were performed on zebrafish embryos in accordance with the European Communities Council Directive (2010/63/EU) and French law (87/848). This project is included the APAFIS project #16469-2018071217081175 approved by the French Ministry for Research for the Paris Brain Institute (ICM).

Reviewing Editor

  1. Michel Bagnat, Duke University, United States

Publication history

  1. Received: May 29, 2020
  2. Accepted: October 12, 2020
  3. Accepted Manuscript published: October 13, 2020 (version 1)
  4. Version of Record published: October 27, 2020 (version 2)
  5. Version of Record updated: October 30, 2020 (version 3)

Copyright

© 2020, Cantaut-Belarif et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 795
    Page views
  • 126
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Developmental Biology
    2. Evolutionary Biology
    Tom Dierschke et al.
    Research Article

    Eukaryotic life cycles alternate between haploid and diploid phases and in phylogenetically diverse unicellular eukaryotes, expression of paralogous homeodomain genes in gametes primes the haploid-to-diploid transition. In the unicellular Chlorophyte alga Chlamydomonas KNOX and BELL TALE-homeodomain genes mediate this transition. We demonstrate that in the liverwort Marchantia polymorpha paternal (sperm) expression of three of five phylogenetically diverse BELL genes, MpBELL234, and maternal (egg) expression of both MpKNOX1 and MpBELL34 mediate the haploid-to-diploid transition. Loss-of-function alleles of MpKNOX1 result in zygotic arrest, whereas loss of either maternal or paternal MpBELL234 results in variable zygotic and early embryonic arrest. Expression of MpKNOX1 and MpBELL34 during diploid sporophyte development is consistent with a later role for these genes in patterning the sporophyte. These results indicate that the ancestral mechanism to activate diploid gene expression was retained in early diverging land plants and subsequently co-opted during evolution of the diploid sporophyte body.

    1. Developmental Biology
    2. Neuroscience
    Lukas Klimmasch et al.
    Research Article Updated

    The development of binocular vision is an active learning process comprising the development of disparity tuned neurons in visual cortex and the establishment of precise vergence control of the eyes. We present a computational model for the learning and self-calibration of active binocular vision based on the Active Efficient Coding framework, an extension of classic efficient coding ideas to active perception. Under normal rearing conditions with naturalistic input, the model develops disparity tuned neurons and precise vergence control, allowing it to correctly interpret random dot stereograms. Under altered rearing conditions modeled after neurophysiological experiments, the model qualitatively reproduces key experimental findings on changes in binocularity and disparity tuning. Furthermore, the model makes testable predictions regarding how altered rearing conditions impede the learning of precise vergence control. Finally, the model predicts a surprising new effect that impaired vergence control affects the statistics of orientation tuning in visual cortical neurons.