Robustness of the microtubule network self-organization in epithelia

  1. Aleksandra Z Plochocka
  2. Miguel Ramirez Moreno
  3. Alexander M Davie
  4. Natalia A Bulgakova  Is a corresponding author
  5. Lyubov Chumakova  Is a corresponding author
  1. Flatiron Institute, United States
  2. University of Sheffield, United Kingdom
  3. University of Edinburgh, United Kingdom

Abstract

Robustness of biological systems is crucial for their survival, however, for many systems its origin is an open question. Here we analyze one sub-cellular level system, the microtubule cytoskeleton. Microtubules self-organize into a network, along which cellular components are delivered to their biologically relevant locations. While the dynamics of individual microtubules is sensitive to the organism's environment and genetics, a similar sensitivity of the overall network would result in pathologies. Our large-scale stochastic simulations show that the self-organization of microtubule networks is robust in a wide parameter range in individual cells. We confirm this robustness in vivo on the tissue-scale using genetic manipulations of Drosophila epithelial cells. Finally, our minimal mathematical model shows that the origin of robustness is the separation of time-scales in microtubule dynamics rates. Altogether, we demonstrate that the tissue-scale self-organization of a microtubule network depends only on cell geometry and the distribution of the microtubule minus-ends.

Data availability

At the time of the publication, all the biological data is available on https://datashare.is.ed.ac.uk/handle/10283/3439 (DOI:10.7488/ds/2642) as stated in the supplementary material in the article.

Article and author information

Author details

  1. Aleksandra Z Plochocka

    Center for Computational Biology and Center for Computational Mathematics, Flatiron Institute, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Miguel Ramirez Moreno

    Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Alexander M Davie

    Maxwell Institute for Mathematical Sciences, School of Mathematics, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Natalia A Bulgakova

    Biomedical Science, University of Sheffield, Sheffield, United Kingdom
    For correspondence
    n.bulgakova@sheffield.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3780-8164
  5. Lyubov Chumakova

    Maxwell Institute for Mathematical Sciences, School of Mathematics, University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    lchumakova@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2551-3905

Funding

Engineering and Physical Sciences Research Council (The Maxwell Institute Graduate School in Analysis and its Applica- tions,a Centre for Doctoral Trai)

  • Aleksandra Z Plochocka

Royal Society of Edinburgh (personal fellowship)

  • Lyubov Chumakova

Biotechnology and Biological Sciences Research Council (BB/P007503/1)

  • Natalia A Bulgakova

Leverhulme Trust (RPG-2017-249)

  • Natalia A Bulgakova
  • Lyubov Chumakova

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Plochocka et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,691
    views
  • 290
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Aleksandra Z Plochocka
  2. Miguel Ramirez Moreno
  3. Alexander M Davie
  4. Natalia A Bulgakova
  5. Lyubov Chumakova
(2021)
Robustness of the microtubule network self-organization in epithelia
eLife 10:e59529.
https://doi.org/10.7554/eLife.59529

Share this article

https://doi.org/10.7554/eLife.59529

Further reading

    1. Cell Biology
    Xiaojiao Hua, Chen Zhao ... Yan Zhou
    Research Article

    The β-catenin-dependent canonical Wnt signaling is pivotal in organ development, tissue homeostasis, and cancer. Here, we identified an upstream enhancer of Ctnnb1 – the coding gene for β-catenin, named ieCtnnb1 (intestinal enhancer of Ctnnb1), which is crucial for intestinal homeostasis. ieCtnnb1 is predominantly active in the base of small intestinal crypts and throughout the epithelia of large intestine. Knockout of ieCtnnb1 led to a reduction in Ctnnb1 transcription, compromising the canonical Wnt signaling in intestinal crypts. Single-cell sequencing revealed that ieCtnnb1 knockout altered epithelial compositions and potentially compromised functions of small intestinal crypts. While deletion of ieCtnnb1 hampered epithelial turnovers in physiologic conditions, it prevented occurrence and progression of Wnt/β-catenin-driven colorectal cancers. Human ieCTNNB1 drove reporter gene expression in a pattern highly similar to mouse ieCtnnb1. ieCTNNB1 contains a single-nucleotide polymorphism associated with CTNNB1 expression levels in human gastrointestinal epithelia. The enhancer activity of ieCTNNB1 in colorectal cancer tissues was stronger than that in adjacent normal tissues. HNF4α and phosphorylated CREB1 were identified as key trans-factors binding to ieCTNNB1 and regulating CTNNB1 transcription. Together, these findings unveil an enhancer-dependent mechanism controlling the dosage of Wnt signaling and homeostasis in intestinal epithelia.

    1. Cell Biology
    2. Stem Cells and Regenerative Medicine
    Nathaniel Paul Meyer, Tania Singh ... Diane L Barber
    Research Article

    Our understanding of the transitions of human embryonic stem cells between distinct stages of pluripotency relies predominantly on regulation by transcriptional and epigenetic programs with limited insight on the role of established morphological changes. We report remodeling of the actin cytoskeleton of human embryonic stem cells (hESCs) as they transition from primed to naïve pluripotency which includes assembly of a ring of contractile actin filaments encapsulating colonies of naïve hESCs. Activity of the Arp2/3 complex is required for the actin ring, to establish uniform cell mechanics within naïve colonies, promote nuclear translocation of the Hippo pathway effectors YAP and TAZ, and effective transition to naïve pluripotency. RNA-sequencing analysis confirms that Arp2/3 complex activity regulates Hippo signaling in hESCs, and impaired naïve pluripotency with inhibited Arp2/3 complex activity is rescued by expressing a constitutively active, nuclear-localized YAP-S127A. Moreover, expression of YAP-S127A partially restores the actin filament fence with Arp2/3 complex inhibition, suggesting that actin filament remodeling is both upstream and downstream of YAP activity. These new findings on the cell biology of hESCs reveal a mechanism for cytoskeletal dynamics coordinating cell mechanics to regulate gene expression and facilitate transitions between pluripotency states.