Laminar-specific cortico-cortical loops in mouse visual cortex

  1. Hedi Young
  2. Beatriz Belbut
  3. Margarida Baeta
  4. Leopoldo Petreanu  Is a corresponding author
  1. Champalimaud Center for the Unknown, Portugal

Abstract

Many theories propose recurrent interactions across the cortical hierarchy, but it is unclear if cortical circuits are selectively wired to implement looped computations. Using subcellular channelrhodopsin-2-assisted circuit mapping in mouse visual cortex, we compared feedforward (FF) or feedback (FB) cortico-cortical synaptic input to cells projecting back to the input source (looped neurons) with cells projecting to a different cortical or subcortical area. FF and FB afferents showed similar cell-type selectivity, making stronger connections with looped neurons than with other projection types in layer (L) 5 and L6, but not in L2/3, resulting in selective modulation of activity in looped neurons. In most cases, stronger connections in looped L5 neurons were located on their apical tufts, but not on their perisomatic dendrites. Our results reveal that cortico-cortical connections are selectively wired to form monosynaptic excitatory loops and support a differential role of supragranular and infragranular neurons in hierarchical recurrent computations.

Data availability

All data is publicly available on Dryad https://doi.org/10.5061/dryad.1ns1rn8r7

The following data sets were generated

Article and author information

Author details

  1. Hedi Young

    Champalimaud Research, Champalimaud Center for the Unknown, Lisbon, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  2. Beatriz Belbut

    Champalimaud Research, Champalimaud Center for the Unknown, Lisbon, Portugal
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0341-0585
  3. Margarida Baeta

    Champalimaud Research, Champalimaud Center for the Unknown, Lisbon, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  4. Leopoldo Petreanu

    Champalimaud Research, Champalimaud Center for the Unknown, Lisbon, Portugal
    For correspondence
    leopoldo.petreanu@neuro.fchampalimaud.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1434-4691

Funding

La Caixa Banking Foundation (LCF/PR/HR17/52150005)

  • Leopoldo Petreanu

Fundação para a Ciência e a Tecnologia (LISBOA-01-0145-FEDER 030328)

  • Leopoldo Petreanu

Fundação para a Ciência e a Tecnologia (Congento LISBOA-01-0145-FEDER-022170)

  • Hedi Young
  • Beatriz Belbut
  • Margarida Baeta
  • Leopoldo Petreanu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Solange P Brown, Johns Hopkins University, United States

Ethics

Animal experimentation: All procedures were reviewed and performed in accordance with the Champalimaud Centre for the Unknown Ethics Committee and approved by the Portuguese Veterinary General Direction.(Ref.No.0421/000/000/2019)

Version history

  1. Received: June 1, 2020
  2. Accepted: January 29, 2021
  3. Accepted Manuscript published: February 1, 2021 (version 1)
  4. Version of Record published: February 11, 2021 (version 2)

Copyright

© 2021, Young et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,519
    views
  • 627
    downloads
  • 35
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hedi Young
  2. Beatriz Belbut
  3. Margarida Baeta
  4. Leopoldo Petreanu
(2021)
Laminar-specific cortico-cortical loops in mouse visual cortex
eLife 10:e59551.
https://doi.org/10.7554/eLife.59551

Share this article

https://doi.org/10.7554/eLife.59551

Further reading

    1. Neuroscience
    Alina Tetereva, Narun Pat
    Research Article

    One well-known biomarker candidate that supposedly helps capture fluid cognition is Brain Age, or a predicted value based on machine-learning models built to predict chronological age from brain MRI. To formally evaluate the utility of Brain Age for capturing fluid cognition, we built 26 age-prediction models for Brain Age based on different combinations of MRI modalities, using the Human Connectome Project in Aging (n=504, 36–100 years old). First, based on commonality analyses, we found a large overlap between Brain Age and chronological age: Brain Age could uniquely add only around 1.6% in explaining variation in fluid cognition over and above chronological age. Second, the age-prediction models that performed better at predicting chronological age did NOT necessarily create better Brain Age for capturing fluid cognition over and above chronological age. Instead, better-performing age-prediction models created Brain Age that overlapped larger with chronological age, up to around 29% out of 32%, in explaining fluid cognition. Third, Brain Age missed around 11% of the total variation in fluid cognition that could have been explained by the brain variation. That is, directly predicting fluid cognition from brain MRI data (instead of relying on Brain Age and chronological age) could lead to around a 1/3-time improvement of the total variation explained. Accordingly, we demonstrated the limited utility of Brain Age as a biomarker for fluid cognition and made some suggestions to ensure the utility of Brain Age in explaining fluid cognition and other phenotypes of interest.

    1. Developmental Biology
    2. Neuroscience
    Jonathan AC Menzies, André Maia Chagas ... Claudio R Alonso
    Research Article

    Movement is a key feature of animal systems, yet its embryonic origins are not fully understood. Here, we investigate the genetic basis underlying the embryonic onset of movement in Drosophila focusing on the role played by small non-coding RNAs (microRNAs, miRNAs). To this end, we first develop a quantitative behavioural pipeline capable of tracking embryonic movement in large populations of fly embryos, and using this system, discover that the Drosophila miRNA miR-2b-1 plays a role in the emergence of movement. Through the combination of spectral analysis of embryonic motor patterns, cell sorting and RNA in situs, genetic reconstitution tests, and neural optical imaging we define that miR-2b-1 influences the emergence of embryonic movement by exerting actions in the developing nervous system. Furthermore, through the combination of bioinformatics coupled to genetic manipulation of miRNA expression and phenocopy tests we identify a previously uncharacterised (but evolutionarily conserved) chloride channel encoding gene – which we term Movement Modulator (Motor) – as a genetic target that mechanistically links miR-2b-1 to the onset of movement. Cell-specific genetic reconstitution of miR-2b-1 expression in a null miRNA mutant background, followed by behavioural assays and target gene analyses, suggest that miR-2b-1 affects the emergence of movement through effects in sensory elements of the embryonic circuitry, rather than in the motor domain. Our work thus reports the first miRNA system capable of regulating embryonic movement, suggesting that other miRNAs are likely to play a role in this key developmental process in Drosophila as well as in other species.