Systematic functional analysis of Rab GTPases reveals limits of neuronal robustness to environmental challenges in flies

  1. Friederike Elisabeth Kohrs
  2. Ilsa-Maria Daumann
  3. Bojana Pavlovic
  4. Eugene Jennifer Jin
  5. F. Ridvan Kiral
  6. Shih-Ching Lin
  7. Filip Port
  8. Heike Wolfenberg
  9. Thomas F Mathejczyk
  10. Gerit A Linneweber
  11. Chih-Chiang Chan
  12. Michael Boutros
  13. P Robin Hiesinger  Is a corresponding author
  1. Free University Berlin, Germany
  2. Freie Universität Berlin, Germany
  3. German Cancer Research Center (DKFZ) Heidelberg, Germany
  4. National Taiwan University, Taiwan
  5. German Cancer Research Center (DKFZ) and Heidelberg University, Germany
  6. Institute for Biology Free University Berlin, Germany

Abstract

Rab GTPases are molecular switches that regulate membrane trafficking in all cells. Neurons have particular demands on membrane trafficking and express numerous Rab GTPases of unknown function. Here we report the generation and characterization of molecularly defined null mutants for all 26 rab genes in Drosophila. In flies, all rab genes are expressed in the nervous system where at least half exhibit particularly high levels compared to other tissues. Surprisingly, loss of any of these 13 nervous system-enriched Rabs yielded viable and fertile flies without obvious morphological defects. However, all 13 mutants differentially affected development when challenged with different temperatures, or neuronal function when challenged with continuous stimulation. We identified a synaptic maintenance defect following continuous stimulation for six mutants, including an autophagy-independent role of rab26. The complete mutant collection generated in this study provides a basis for further comprehensive studies of Rab GTPases during development and function in vivo.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Friederike Elisabeth Kohrs

    Division of Neurobiology, Institute for Biology, Free University Berlin, Berlin, Germany
    Competing interests
    No competing interests declared.
  2. Ilsa-Maria Daumann

    Division of Neurobilogy, Freie Universität Berlin, Berlin, Germany
    Competing interests
    No competing interests declared.
  3. Bojana Pavlovic

    Div. Signaling and Functional Genomics and Heidelberg University, German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
    Competing interests
    No competing interests declared.
  4. Eugene Jennifer Jin

    Division of Neurobilogy, Freie Universität Berlin, Berlin, Germany
    Competing interests
    No competing interests declared.
  5. F. Ridvan Kiral

    Division of Neurobilogy, Freie Universität Berlin, Berlin, Germany
    Competing interests
    No competing interests declared.
  6. Shih-Ching Lin

    Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2960-5348
  7. Filip Port

    Div. Signaling and Functional Genomics and Heidelberg University, German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5157-4835
  8. Heike Wolfenberg

    Division of Neurobilogy, Freie Universität Berlin, Berlin, Germany
    Competing interests
    No competing interests declared.
  9. Thomas F Mathejczyk

    Division of Neurobilogy, Freie Universität Berlin, Berlin, Germany
    Competing interests
    No competing interests declared.
  10. Gerit A Linneweber

    Division of Neurobiology, Institute for Biology, Free University Berlin, Berlin, Germany
    Competing interests
    No competing interests declared.
  11. Chih-Chiang Chan

    Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2626-3805
  12. Michael Boutros

    Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Heidelberg University, Heidelberg, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9458-817X
  13. P Robin Hiesinger

    Division of Neurobiology, Institute for Biology Free University Berlin, Berlin, Germany
    For correspondence
    prh@zedat.fu-berlin.de
    Competing interests
    P Robin Hiesinger, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4698-3527

Funding

Deutsche Forschungsgemeinschaft (TRR186)

  • P Robin Hiesinger

Deutsche Forschungsgemeinschaft (TRR186)

  • Michael Boutros

National Institutes of Health (RO1EY018884)

  • P Robin Hiesinger

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mani Ramaswami, Trinity College Dublin, Ireland

Version history

  1. Received: June 2, 2020
  2. Accepted: March 4, 2021
  3. Accepted Manuscript published: March 5, 2021 (version 1)
  4. Version of Record published: April 1, 2021 (version 2)

Copyright

© 2021, Kohrs et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,941
    views
  • 389
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Friederike Elisabeth Kohrs
  2. Ilsa-Maria Daumann
  3. Bojana Pavlovic
  4. Eugene Jennifer Jin
  5. F. Ridvan Kiral
  6. Shih-Ching Lin
  7. Filip Port
  8. Heike Wolfenberg
  9. Thomas F Mathejczyk
  10. Gerit A Linneweber
  11. Chih-Chiang Chan
  12. Michael Boutros
  13. P Robin Hiesinger
(2021)
Systematic functional analysis of Rab GTPases reveals limits of neuronal robustness to environmental challenges in flies
eLife 10:e59594.
https://doi.org/10.7554/eLife.59594

Share this article

https://doi.org/10.7554/eLife.59594

Further reading

    1. Cell Biology
    Ang Li, Jianxun Yi ... Jingsong Zhou
    Research Article

    Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disorder characterized by progressive weakness of almost all skeletal muscles, whereas extraocular muscles (EOMs) are comparatively spared. While hindlimb and diaphragm muscles of end-stage SOD1G93A (G93A) mice (a familial ALS mouse model) exhibit severe denervation and depletion of Pax7+satellite cells (SCs), we found that the pool of SCs and the integrity of neuromuscular junctions (NMJs) are maintained in EOMs. In cell sorting profiles, SCs derived from hindlimb and diaphragm muscles of G93A mice exhibit denervation-related activation, whereas SCs from EOMs of G93A mice display spontaneous (non-denervation-related) activation, similar to SCs from wild-type mice. Specifically, cultured EOM SCs contain more abundant transcripts of axon guidance molecules, including Cxcl12, along with more sustainable renewability than the diaphragm and hindlimb counterparts under differentiation pressure. In neuromuscular co-culture assays, AAV-delivery of Cxcl12 to G93A-hindlimb SC-derived myotubes enhances motor neuron axon extension and innervation, recapitulating the innervation capacity of EOM SC-derived myotubes. G93A mice fed with sodium butyrate (NaBu) supplementation exhibited less NMJ loss in hindlimb and diaphragm muscles. Additionally, SCs derived from G93A hindlimb and diaphragm muscles displayed elevated expression of Cxcl12 and improved renewability following NaBu treatment in vitro. Thus, the NaBu-induced transcriptomic changes resembling the patterns of EOM SCs may contribute to the beneficial effects observed in G93A mice. More broadly, the distinct transcriptomic profile of EOM SCs may offer novel therapeutic targets to slow progressive neuromuscular functional decay in ALS and provide possible ‘response biomarkers’ in pre-clinical and clinical studies.

    1. Cell Biology
    Simona Bolamperti, Hiroaki Saito ... Hanna Taipaleenmäki
    Research Article

    Osteoblast adherence to bone surfaces is important for remodeling bone tissue. This study demonstrates that deficiency of TG-interacting factor 1 (Tgif1) in osteoblasts results in altered cell morphology, reduced adherence to collagen type I-coated surfaces, and impaired migration capacity. Tgif1 is essential for osteoblasts to adapt a regular cell morphology and to efficiently adhere and migrate on collagen type I-rich matrices in vitro. Furthermore, Tgif1 acts as a transcriptional repressor of p21-activated kinase 3 (Pak3), an important regulator of focal adhesion formation and osteoblast spreading. Absence of Tgif1 leads to increased Pak3 expression, which impairs osteoblast spreading. Additionally, Tgif1 is implicated in osteoblast recruitment and activation of bone surfaces in the context of bone regeneration and in response to parathyroid hormone 1–34 (PTH 1–34) treatment in vivo in mice. These findings provide important novel insights in the regulation of the cytoskeletal architecture of osteoblasts.