Odd-paired is a pioneer-like factor that coordinates with Zelda to control gene expression in embryos

  1. Theodora Koromila
  2. Fan Gao
  3. Yasuno Iwasaki
  4. Peng He
  5. Lior Pachter
  6. J Peter Gergen
  7. Angelike Stathopoulos  Is a corresponding author
  1. California Institute of Technology, United States
  2. SUNY, United States

Abstract

Pioneer factors such as Zelda (Zld) help initiate zygotic transcription in Drosophila early embryos, but whether other factors support this dynamic process is unclear. Odd-paired (Opa), a zinc-finger transcription factor expressed at cellularization, controls the transition of genes from pair-rule to segmental patterns along the anterior-posterior axis. Finding that Opa also regulates expression through enhancer sog_Distal along the dorso-ventral axis, we hypothesized Opa’s role is more general. Chromatin-immunoprecipitation (ChIP-seq) confirmed its in vivo binding to sog_Distal but also identified widespread binding throughout the genome, comparable to Zld. Furthermore, chromatin assays (ATAC-seq) demonstrate that Opa, like Zld, influences chromatin accessibility genome-wide at cellularization, suggesting both are pioneer factors with common as well as distinct targets. Lastly, embryos lacking opa exhibit widespread, late patterning defects spanning both axes. Collectively, these data suggest Opa is a general timing factor and likely late-acting pioneer factor that drives a secondary wave of zygotic gene expression.

Data availability

GEO accession number SuperSeries GSE153329. SubSeries: ChIP-seq and singled-end ATAC-seq (GSE140722), and RNA-seq and paired-end ATAC-seq data access (GSE153328).RNA-seq and paired-end ATAC-seq data access: https://www.ncbi.nlm.nih.gov/geo/info/submissionftp.html, folder name: GEO_Theodora and Directory name: uploads/tkoromila_YTqdmKKoThe codes for RNA-seq, Opa ChIP-seq and ATAC-seq processing (alignment and peak calling) were uploaded to github: https://github.com/caltech-bioinformatics-resource-center/Stathopoulos_Lab

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Theodora Koromila

    Division of Biology, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5504-1369
  2. Fan Gao

    Division of Biology, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yasuno Iwasaki

    Department of Biochemistry and Cell Biology, SUNY, Stonybrook, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Peng He

    Division of Biology, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2457-3554
  5. Lior Pachter

    Division of Biology and Biological Engineering and Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. J Peter Gergen

    Department of Biochemistry and Cell Biology, SUNY, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Angelike Stathopoulos

    Division of Biology, California Institute of Technology, Pasadena, United States
    For correspondence
    angelike@caltech.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6597-2036

Funding

National Institute of General Medical Sciences (R35GM118146)

  • Angelike Stathopoulos

Eunice Kennedy Shriver National Institute of Child Health and Human Development (R03HD097535)

  • Angelike Stathopoulos

Bioinformatics Resource Center at the Beckman Institute of Caltech (n/a)

  • Fan Gao

Stony Brook University College of Arts and Sciences (n/a)

  • J Peter Gergen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Oliver Hobert, Howard Hughes Medical Institute, Columbia University, United States

Version history

  1. Received: November 26, 2019
  2. Accepted: July 22, 2020
  3. Accepted Manuscript published: July 23, 2020 (version 1)
  4. Accepted Manuscript updated: July 24, 2020 (version 2)
  5. Version of Record published: August 10, 2020 (version 3)

Copyright

© 2020, Koromila et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,185
    views
  • 360
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Theodora Koromila
  2. Fan Gao
  3. Yasuno Iwasaki
  4. Peng He
  5. Lior Pachter
  6. J Peter Gergen
  7. Angelike Stathopoulos
(2020)
Odd-paired is a pioneer-like factor that coordinates with Zelda to control gene expression in embryos
eLife 9:e59610.
https://doi.org/10.7554/eLife.59610

Share this article

https://doi.org/10.7554/eLife.59610

Further reading

    1. Developmental Biology
    Amandine Jarysta, Abigail LD Tadenev ... Basile Tarchini
    Research Article

    Inhibitory G alpha (GNAI or Gαi) proteins are critical for the polarized morphogenesis of sensory hair cells and for hearing. The extent and nature of their actual contributions remains unclear, however, as previous studies did not investigate all GNAI proteins and included non-physiological approaches. Pertussis toxin can downregulate functionally redundant GNAI1, GNAI2, GNAI3, and GNAO proteins, but may also induce unrelated defects. Here, we directly and systematically determine the role(s) of each individual GNAI protein in mouse auditory hair cells. GNAI2 and GNAI3 are similarly polarized at the hair cell apex with their binding partner G protein signaling modulator 2 (GPSM2), whereas GNAI1 and GNAO are not detected. In Gnai3 mutants, GNAI2 progressively fails to fully occupy the sub-cellular compartments where GNAI3 is missing. In contrast, GNAI3 can fully compensate for the loss of GNAI2 and is essential for hair bundle morphogenesis and auditory function. Simultaneous inactivation of Gnai2 and Gnai3 recapitulates for the first time two distinct types of defects only observed so far with pertussis toxin: (1) a delay or failure of the basal body to migrate off-center in prospective hair cells, and (2) a reversal in the orientation of some hair cell types. We conclude that GNAI proteins are critical for hair cells to break planar symmetry and to orient properly before GNAI2/3 regulate hair bundle morphogenesis with GPSM2.

    1. Computational and Systems Biology
    2. Developmental Biology
    Gang Xue, Xiaoyi Zhang ... Zhiyuan Li
    Research Article

    Organisms utilize gene regulatory networks (GRN) to make fate decisions, but the regulatory mechanisms of transcription factors (TF) in GRNs are exceedingly intricate. A longstanding question in this field is how these tangled interactions synergistically contribute to decision-making procedures. To comprehensively understand the role of regulatory logic in cell fate decisions, we constructed a logic-incorporated GRN model and examined its behavior under two distinct driving forces (noise-driven and signal-driven). Under the noise-driven mode, we distilled the relationship among fate bias, regulatory logic, and noise profile. Under the signal-driven mode, we bridged regulatory logic and progression-accuracy trade-off, and uncovered distinctive trajectories of reprogramming influenced by logic motifs. In differentiation, we characterized a special logic-dependent priming stage by the solution landscape. Finally, we applied our findings to decipher three biological instances: hematopoiesis, embryogenesis, and trans-differentiation. Orthogonal to the classical analysis of expression profile, we harnessed noise patterns to construct the GRN corresponding to fate transition. Our work presents a generalizable framework for top-down fate-decision studies and a practical approach to the taxonomy of cell fate decisions.