Use of signals of positive and negative selection to distinguish cancer genes and passenger genes

  1. László Bányai
  2. Maria Trexler
  3. Krisztina Kerekes
  4. Orsolya Csuka
  5. László Patthy  Is a corresponding author
  1. Research Centre for Natural Sciences, Hungary
  2. National Institute of Oncology, Hungary

Abstract

A major goal of cancer genomics is to identify all genes that play critical roles in carcinogenesis. Most approaches focused on genes positively selected for mutations that drive carcinogenesis and neglected the role of negative selection. Some studies have actually concluded that negative selection has no role in cancer evolution. We have re-examined the role of negative selection in tumor evolution through the analysis of the patterns of somatic mutations affecting the coding sequences of human genes. Our analyses have confirmed that tumor suppressor genes are positively selected for inactivating mutations, oncogenes, however, were found to display signals of both negative selection for inactivating mutations and positive selection for activating mutations. Significantly, we have identified numerous human genes that show signs of strong negative selection during tumor evolution, suggesting that their functional integrity is essential for the growth and survival of tumor cells.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

The following previously published data sets were used

Article and author information

Author details

  1. László Bányai

    Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  2. Maria Trexler

    Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  3. Krisztina Kerekes

    Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  4. Orsolya Csuka

    Department of Pathogenetics, National Institute of Oncology, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  5. László Patthy

    Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
    For correspondence
    patthy.laszlo@ttk.mta.hu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1329-0484

Funding

Hungarian National Research, Development and Innovation Office (GINOP-2.3.2-15-2016-00001)

  • László Bányai
  • Maria Trexler
  • Krisztina Kerekes
  • László Patthy

Hungarian National Research, Development and Innovation Office (NVKP_16-1-2016-0005)

  • Orsolya Csuka

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Eduardo Eyras, Australian National University, Australia

Version history

  1. Received: June 3, 2020
  2. Accepted: January 10, 2021
  3. Accepted Manuscript published: January 11, 2021 (version 1)
  4. Version of Record published: February 11, 2021 (version 2)

Copyright

© 2021, Bányai et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,497
    Page views
  • 392
    Downloads
  • 9
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. László Bányai
  2. Maria Trexler
  3. Krisztina Kerekes
  4. Orsolya Csuka
  5. László Patthy
(2021)
Use of signals of positive and negative selection to distinguish cancer genes and passenger genes
eLife 10:e59629.
https://doi.org/10.7554/eLife.59629

Further reading

    1. Cancer Biology
    Gehad Youssef, Luke Gammon ... Adrian Biddle
    Research Article

    Cancer stem cells (CSCs) undergo epithelial-mesenchymal transition (EMT) to drive metastatic dissemination in experimental cancer models. However, tumour cells undergoing EMT have not been observed disseminating into the tissue surrounding human tumour specimens, leaving the relevance to human cancer uncertain. We have previously identified both EpCAM and CD24 as CSC markers that, alongside the mesenchymal marker Vimentin, identify EMT CSCs in human oral cancer cell lines. This afforded the opportunity to investigate whether the combination of these three markers can identify disseminating EMT CSCs in actual human tumours. Examining disseminating tumour cells in over 12,000 imaging fields from 74 human oral tumours, we see a significant enrichment of EpCAM, CD24 and Vimentin co-stained cells disseminating beyond the tumour body in metastatic specimens. Through training an artificial neural network, these predict metastasis with high accuracy (cross-validated accuracy of 87-89%). In this study, we have observed single disseminating EMT CSCs in human oral cancer specimens, and these are highly predictive of metastatic disease.

    1. Cancer Biology
    2. Medicine
    Dingyu Rao, Hua Lu ... Defa Huang
    Research Article

    Esophageal cancer (EC) is a fatal digestive disease with a poor prognosis and frequent lymphatic metastases. Nevertheless, reliable biomarkers for EC diagnosis are currently unavailable. Accordingly, we have performed a comparative proteomics analysis on cancer and paracancer tissue-derived exosomes from eight pairs of EC patients using label-free quantification proteomics profiling and have analyzed the differentially expressed proteins through bioinformatics. Furthermore, nano-flow cytometry (NanoFCM) was used to validate the candidate proteins from plasma-derived exosomes in 122 EC patients. Of the 803 differentially expressed proteins discovered in cancer and paracancer tissue-derived exosomes, 686 were up-regulated and 117 were down-regulated. Intercellular adhesion molecule-1 (CD54) was identified as an up-regulated candidate for further investigation, and its high expression in cancer tissues of EC patients was validated using immunohistochemistry, real-time quantitative PCR (RT-qPCR), and western blot analyses. In addition, plasma-derived exosome NanoFCM data from 122 EC patients concurred with our proteomic analysis. The receiver operating characteristic (ROC) analysis demonstrated that the AUC, sensitivity, and specificity values for CD54 were 0.702, 66.13%, and 71.31%, respectively, for EC diagnosis. Small interference (si)RNA was employed to silence the CD54 gene in EC cells. A series of assays, including cell counting kit-8, adhesion, wound healing, and Matrigel invasion, were performed to investigate EC viability, adhesive, migratory, and invasive abilities, respectively. The results showed that CD54 promoted EC proliferation, migration, and invasion. Collectively, tissue-derived exosomal proteomics strongly demonstrates that CD54 is a promising biomarker for EC diagnosis and a key molecule for EC development.