Use of signals of positive and negative selection to distinguish cancer genes and passenger genes

  1. László Bányai
  2. Maria Trexler
  3. Krisztina Kerekes
  4. Orsolya Csuka
  5. László Patthy  Is a corresponding author
  1. Research Centre for Natural Sciences, Hungary
  2. National Institute of Oncology, Hungary

Abstract

A major goal of cancer genomics is to identify all genes that play critical roles in carcinogenesis. Most approaches focused on genes positively selected for mutations that drive carcinogenesis and neglected the role of negative selection. Some studies have actually concluded that negative selection has no role in cancer evolution. We have re-examined the role of negative selection in tumor evolution through the analysis of the patterns of somatic mutations affecting the coding sequences of human genes. Our analyses have confirmed that tumor suppressor genes are positively selected for inactivating mutations, oncogenes, however, were found to display signals of both negative selection for inactivating mutations and positive selection for activating mutations. Significantly, we have identified numerous human genes that show signs of strong negative selection during tumor evolution, suggesting that their functional integrity is essential for the growth and survival of tumor cells.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

The following previously published data sets were used

Article and author information

Author details

  1. László Bányai

    Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  2. Maria Trexler

    Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  3. Krisztina Kerekes

    Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  4. Orsolya Csuka

    Department of Pathogenetics, National Institute of Oncology, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  5. László Patthy

    Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
    For correspondence
    patthy.laszlo@ttk.mta.hu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1329-0484

Funding

Hungarian National Research, Development and Innovation Office (GINOP-2.3.2-15-2016-00001)

  • László Bányai
  • Maria Trexler
  • Krisztina Kerekes
  • László Patthy

Hungarian National Research, Development and Innovation Office (NVKP_16-1-2016-0005)

  • Orsolya Csuka

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Bányai et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,756
    views
  • 412
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. László Bányai
  2. Maria Trexler
  3. Krisztina Kerekes
  4. Orsolya Csuka
  5. László Patthy
(2021)
Use of signals of positive and negative selection to distinguish cancer genes and passenger genes
eLife 10:e59629.
https://doi.org/10.7554/eLife.59629

Share this article

https://doi.org/10.7554/eLife.59629

Further reading

    1. Cancer Biology
    2. Cell Biology
    Francesca Butera, Julia E Sero ... Chris Bakal
    Research Article

    The canonical NF-κB transcription factor RELA is a master regulator of immune and stress responses and is upregulated in PDAC tumours. In this study, we characterised previously unexplored endogenous RELA-GFP dynamics in PDAC cell lines through live single cell imaging. Our observations revealed that TNFα stimulation induces rapid, sustained, and non-oscillatory nuclear translocation of RELA. Through Bayesian analysis of single cell datasets with variation in nuclear RELA, we predicted that RELA heterogeneity in PDAC cell lines is dependent on F-actin dynamics. RNA-seq analysis identified distinct clusters of RELA-regulated gene expression in PDAC cells, including TNFα-induced RELA upregulation of the actin regulators NUAK2 and ARHGAP31. Further, siRNA-mediated depletion of ARHGAP31 and NUAK2 altered TNFα-stimulated nuclear RELA dynamics in PDAC cells, establishing a novel negative feedback loop that regulates RELA activation by TNFα. Additionally, we characterised the NF-κB pathway in PDAC cells, identifying how NF-κB/IκB proteins genetically and physically interact with RELA in the absence or presence of TNFα. Taken together, we provide computational and experimental support for interdependence between the F-actin network and the NF-κB pathway with RELA translocation dynamics in PDAC.

    1. Cancer Biology
    Danielle Algranati, Roni Oren ... Efrat Shema
    Research Article

    Diffuse midline gliomas (DMGs) are aggressive and fatal pediatric tumors of the central nervous system that are highly resistant to treatments. Lysine to methionine substitution of residue 27 on histone H3 (H3-K27M) is a driver mutation in DMGs, reshaping the epigenetic landscape of these cells to promote tumorigenesis. H3-K27M gliomas are characterized by deregulation of histone acetylation and methylation pathways, as well as the oncogenic MYC pathway. In search of effective treatment, we examined the therapeutic potential of dual targeting of histone deacetylases (HDACs) and MYC in these tumors. Treatment of H3-K27M patient-derived cells with Sulfopin, an inhibitor shown to block MYC-driven tumors in vivo, in combination with the HDAC inhibitor Vorinostat, resulted in substantial decrease in cell viability. Moreover, transcriptome and epigenome profiling revealed synergistic effect of this drug combination in downregulation of prominent oncogenic pathways such as mTOR. Finally, in vivo studies of patient-derived orthotopic xenograft models showed significant tumor growth reduction in mice treated with the drug combination. These results highlight the combined treatment with PIN1 and HDAC inhibitors as a promising therapeutic approach for these aggressive tumors.