Removing unwanted variation with CytofRUV to integrate multiple CyTOF datasets

  1. Marie Trussart  Is a corresponding author
  2. Charis E Teh
  3. Tania Tan
  4. Lawrence Leong
  5. Daniel HD Gray
  6. Terence P Speed
  1. The Walter and Eliza Hall Institute of Medical Research, Australia

Abstract

Mass cytometry (CyTOF) is a technology that has revolutionised single cell biology. By detecting over 40 proteins on millions of single cells, CyTOF allows the characterisation of cell subpopulations in unprecedented detail. However most CyTOF studies require the integration of data from multiple CyTOF batches usually acquired on different days and possibly at different sites. To date, the integration of CyTOF datasets remains a challenge due to technical differences arising in multiple batches. To overcome this limitation, we developed an approach called CytofRUV for analysing multiple CyTOF batches which includes an R-Shiny application with diagnostics plots. CytofRUV can correct for batch effects and integrate data from large numbers of patients and conditions across batches, to confidently compare cellular changes and correlate these with clinically relevant outcomes.

Data availability

Flow Repository: The fcs files from this study are available at flow repository ID FR-FCM-Z2L2.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Marie Trussart

    Bioinformatics, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
    For correspondence
    trussart.m@wehi.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7258-7272
  2. Charis E Teh

    Bioinformatics, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Tania Tan

    Bioinformatics, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Lawrence Leong

    Bioinformatics, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Daniel HD Gray

    Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8457-8242
  6. Terence P Speed

    Bioinformatics, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Health and Medical Research Council (1054618)

  • Marie Trussart
  • Terence P Speed

National Health and Medical Research Council (1158024)

  • Daniel HD Gray

Cancer Council Victoria (1146518)

  • Daniel HD Gray

National Health and Medical Research Council (1089072)

  • Charis E Teh

Cancer Council Victoria (1146518)

  • Tania Tan

Perpetual Impact Philanthropy (IPAP2019/1437)

  • Charis E Teh

UROP Fellowship

  • Lawrence Leong

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Greg Finak

Ethics

Human subjects: All patients provided written informed consent and the study was approved by Human Research Ethics Committees/Institutional Review Boards: RMH (2005.008, 2012.244, 2016.305,2016.066) and the Walter and Eliza Hall Institute (G15/05).

Version history

  1. Received: June 3, 2020
  2. Accepted: September 5, 2020
  3. Accepted Manuscript published: September 7, 2020 (version 1)
  4. Version of Record published: September 18, 2020 (version 2)
  5. Version of Record updated: November 5, 2020 (version 3)

Copyright

© 2020, Trussart et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,211
    views
  • 277
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marie Trussart
  2. Charis E Teh
  3. Tania Tan
  4. Lawrence Leong
  5. Daniel HD Gray
  6. Terence P Speed
(2020)
Removing unwanted variation with CytofRUV to integrate multiple CyTOF datasets
eLife 9:e59630.
https://doi.org/10.7554/eLife.59630

Share this article

https://doi.org/10.7554/eLife.59630

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    N Suhas Jagannathan, Javier Yu Peng Koh ... Lisa Tucker-Kellogg
    Research Article

    Bats have unique characteristics compared to other mammals, including increased longevity and higher resistance to cancer and infectious disease. While previous studies have analyzed the metabolic requirements for flight, it is still unclear how bat metabolism supports these unique features, and no study has integrated metabolomics, transcriptomics, and proteomics to characterize bat metabolism. In this work, we performed a multi-omics data analysis using a computational model of metabolic fluxes to identify fundamental differences in central metabolism between primary lung fibroblast cell lines from the black flying fox fruit bat (Pteropus alecto) and human. Bat cells showed higher expression levels of Complex I components of electron transport chain (ETC), but, remarkably, a lower rate of oxygen consumption. Computational modeling interpreted these results as indicating that Complex II activity may be low or reversed, similar to an ischemic state. An ischemic-like state of bats was also supported by decreased levels of central metabolites and increased ratios of succinate to fumarate in bat cells. Ischemic states tend to produce reactive oxygen species (ROS), which would be incompatible with the longevity of bats. However, bat cells had higher antioxidant reservoirs (higher total glutathione and higher ratio of NADPH to NADP) despite higher mitochondrial ROS levels. In addition, bat cells were more resistant to glucose deprivation and had increased resistance to ferroptosis, one of the characteristics of which is oxidative stress. Thus, our studies revealed distinct differences in the ETC regulation and metabolic stress responses between human and bat cells.

    1. Computational and Systems Biology
    2. Neuroscience
    Sara Ibañez, Nilapratim Sengupta ... Christina M Weaver
    Research Article

    Normal aging leads to myelin alterations in the rhesus monkey dorsolateral prefrontal cortex (dlPFC), which are positively correlated with degree of cognitive impairment. It is hypothesized that remyelination with shorter and thinner myelin sheaths partially compensates for myelin degradation, but computational modeling has not yet explored these two phenomena together systematically. Here, we used a two-pronged modeling approach to determine how age-related myelin changes affect a core cognitive function: spatial working memory. First, we built a multicompartment pyramidal neuron model fit to monkey dlPFC empirical data, with an axon including myelinated segments having paranodes, juxtaparanodes, internodes, and tight junctions. This model was used to quantify conduction velocity (CV) changes and action potential (AP) failures after demyelination and subsequent remyelination. Next, we incorporated the single neuron results into a spiking neural network model of working memory. While complete remyelination nearly recovered axonal transmission and network function to unperturbed levels, our models predict that biologically plausible levels of myelin dystrophy, if uncompensated by other factors, can account for substantial working memory impairment with aging. The present computational study unites empirical data from ultrastructure up to behavior during normal aging, and has broader implications for many demyelinating conditions, such as multiple sclerosis or schizophrenia.