A low affinity cis-regulatory BMP response element restricts target gene activation to subsets of Drosophila neurons

Abstract

Retrograde BMP signaling and canonical pMad/Medea-mediated transcription regulates diverse target genes across subsets of Drosophila efferent neurons, to differentiate neuropeptidergic neurons and promote motor neuron terminal maturation. How a common BMP signal regulates diverse target genes across neuronal subsets remains largely unresolved, although available evidence implicates subset-specific transcription factor codes rather than differences in BMP signaling. Here, we examine the cis-regulatory mechanisms restricting BMP-induced FMRFa neuropeptide expression to Tv4 neurons. We find that pMad/Medea bind at an atypical, low affinity motif in the FMRFa enhancer. Converting this motif to high affinity caused ectopic enhancer activity and eliminated Tv4 neuron expression. In silico searches identified additional motif instances functional in other efferent neurons, implicating broader functions for this motif in BMP-dependent enhancer activity. Thus, differential interpretation of a common BMP signal, conferred by low affinity pMad/Medea binding motifs, can contribute to the specification of BMP target genes in efferent neuron subsets.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Anthony JE Berndt

    Department of Food & Fuel for the 21st Century, University of California San, Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0132-7393
  2. Katerina M Othonos

    Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Tianshun Lian

    Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Stephane Flibotte

    UBC/LSI Bioinformatics Facility, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Mo Miao

    Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Shamsuddin Buiyan

    Psychiatry, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Raymond Y Cho

    Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Justin S Fong

    Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Seo Am Hur

    Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4163-7182
  10. Paul Pavlidis

    Psychiatry/Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0426-5028
  11. Douglas W Allan

    Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
    For correspondence
    doug.allan@ubc.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3488-8365

Funding

Canadian Institutes of Health Research (MOP-98011)

  • Douglas W Allan

Canadian Institutes of Health Research (MOP-130517)

  • Douglas W Allan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Berndt et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,052
    views
  • 143
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anthony JE Berndt
  2. Katerina M Othonos
  3. Tianshun Lian
  4. Stephane Flibotte
  5. Mo Miao
  6. Shamsuddin Buiyan
  7. Raymond Y Cho
  8. Justin S Fong
  9. Seo Am Hur
  10. Paul Pavlidis
  11. Douglas W Allan
(2020)
A low affinity cis-regulatory BMP response element restricts target gene activation to subsets of Drosophila neurons
eLife 9:e59650.
https://doi.org/10.7554/eLife.59650

Share this article

https://doi.org/10.7554/eLife.59650

Further reading

    1. Neuroscience
    2. Structural Biology and Molecular Biophysics
    Amy N Shore, Keyong Li ... Matthew C Weston
    Research Article

    More than 20 recurrent missense gain-of-function (GOF) mutations have been identified in the sodium-activated potassium (KNa) channel gene KCNT1 in patients with severe developmental and epileptic encephalopathies (DEEs), most of which are resistant to current therapies. Defining the neuron types most vulnerable to KCNT1 GOF will advance our understanding of disease mechanisms and provide refined targets for precision therapy efforts. Here, we assessed the effects of heterozygous expression of a Kcnt1 GOF variant (Kcnt1Y777H) on KNa currents and neuronal physiology among cortical glutamatergic and GABAergic neurons in mice, including those expressing vasoactive intestinal polypeptide (VIP), somatostatin (SST), and parvalbumin (PV), to identify and model the pathogenic mechanisms of autosomal dominant KCNT1 GOF variants in DEEs. Although the Kcnt1Y777H variant had no effects on glutamatergic or VIP neuron function, it increased subthreshold KNa currents in both SST and PV neurons but with opposite effects on neuronal output; SST neurons became hypoexcitable with a higher rheobase current and lower action potential (AP) firing frequency, whereas PV neurons became hyperexcitable with a lower rheobase current and higher AP firing frequency. Further neurophysiological and computational modeling experiments showed that the differential effects of the Kcnt1Y777H variant on SST and PV neurons are not likely due to inherent differences in these neuron types, but to an increased persistent sodium current in PV, but not SST, neurons. The Kcnt1Y777H variant also increased excitatory input onto, and chemical and electrical synaptic connectivity between, SST neurons. Together, these data suggest differential pathogenic mechanisms, both direct and compensatory, contribute to disease phenotypes, and provide a salient example of how a pathogenic ion channel variant can cause opposite functional effects in closely related neuron subtypes due to interactions with other ionic conductances.

    1. Neuroscience
    Jun Yang, Hanqi Zhang, Sukbin Lim
    Research Article

    Errors in stimulus estimation reveal how stimulus representation changes during cognitive processes. Repulsive bias and minimum variance observed near cardinal axes are well-known error patterns typically associated with visual orientation perception. Recent experiments suggest that these errors continuously evolve during working memory, posing a challenge that neither static sensory models nor traditional memory models can address. Here, we demonstrate that these evolving errors, maintaining characteristic shapes, require network interaction between two distinct modules. Each module fulfills efficient sensory encoding and memory maintenance, which cannot be achieved simultaneously in a single-module network. The sensory module exhibits heterogeneous tuning with strong inhibitory modulation reflecting natural orientation statistics. While the memory module, operating alone, supports homogeneous representation via continuous attractor dynamics, the fully connected network forms discrete attractors with moderate drift speed and nonuniform diffusion processes. Together, our work underscores the significance of sensory-memory interaction in continuously shaping stimulus representation during working memory.