A low affinity cis-regulatory BMP response element restricts target gene activation to subsets of Drosophila neurons

Abstract

Retrograde BMP signaling and canonical pMad/Medea-mediated transcription regulates diverse target genes across subsets of Drosophila efferent neurons, to differentiate neuropeptidergic neurons and promote motor neuron terminal maturation. How a common BMP signal regulates diverse target genes across neuronal subsets remains largely unresolved, although available evidence implicates subset-specific transcription factor codes rather than differences in BMP signaling. Here, we examine the cis-regulatory mechanisms restricting BMP-induced FMRFa neuropeptide expression to Tv4 neurons. We find that pMad/Medea bind at an atypical, low affinity motif in the FMRFa enhancer. Converting this motif to high affinity caused ectopic enhancer activity and eliminated Tv4 neuron expression. In silico searches identified additional motif instances functional in other efferent neurons, implicating broader functions for this motif in BMP-dependent enhancer activity. Thus, differential interpretation of a common BMP signal, conferred by low affinity pMad/Medea binding motifs, can contribute to the specification of BMP target genes in efferent neuron subsets.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Anthony JE Berndt

    Department of Food & Fuel for the 21st Century, University of California San, Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0132-7393
  2. Katerina M Othonos

    Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Tianshun Lian

    Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Stephane Flibotte

    UBC/LSI Bioinformatics Facility, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Mo Miao

    Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Shamsuddin Buiyan

    Psychiatry, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Raymond Y Cho

    Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Justin S Fong

    Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Seo Am Hur

    Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4163-7182
  10. Paul Pavlidis

    Psychiatry/Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0426-5028
  11. Douglas W Allan

    Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
    For correspondence
    doug.allan@ubc.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3488-8365

Funding

Canadian Institutes of Health Research (MOP-98011)

  • Douglas W Allan

Canadian Institutes of Health Research (MOP-130517)

  • Douglas W Allan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Oliver Hobert, Howard Hughes Medical Institute, Columbia University, United States

Version history

  1. Received: June 3, 2020
  2. Accepted: October 29, 2020
  3. Accepted Manuscript published: October 30, 2020 (version 1)
  4. Version of Record published: November 16, 2020 (version 2)

Copyright

© 2020, Berndt et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,023
    views
  • 140
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anthony JE Berndt
  2. Katerina M Othonos
  3. Tianshun Lian
  4. Stephane Flibotte
  5. Mo Miao
  6. Shamsuddin Buiyan
  7. Raymond Y Cho
  8. Justin S Fong
  9. Seo Am Hur
  10. Paul Pavlidis
  11. Douglas W Allan
(2020)
A low affinity cis-regulatory BMP response element restricts target gene activation to subsets of Drosophila neurons
eLife 9:e59650.
https://doi.org/10.7554/eLife.59650

Share this article

https://doi.org/10.7554/eLife.59650

Further reading

    1. Neuroscience
    Ivan Tomić, Paul M Bays
    Research Article

    Probing memory of a complex visual image within a few hundred milliseconds after its disappearance reveals significantly greater fidelity of recall than if the probe is delayed by as little as a second. Classically interpreted, the former taps into a detailed but rapidly decaying visual sensory or ‘iconic’ memory (IM), while the latter relies on capacity-limited but comparatively stable visual working memory (VWM). While iconic decay and VWM capacity have been extensively studied independently, currently no single framework quantitatively accounts for the dynamics of memory fidelity over these time scales. Here, we extend a stationary neural population model of VWM with a temporal dimension, incorporating rapid sensory-driven accumulation of activity encoding each visual feature in memory, and a slower accumulation of internal error that causes memorized features to randomly drift over time. Instead of facilitating read-out from an independent sensory store, an early cue benefits recall by lifting the effective limit on VWM signal strength imposed when multiple items compete for representation, allowing memory for the cued item to be supplemented with information from the decaying sensory trace. Empirical measurements of human recall dynamics validate these predictions while excluding alternative model architectures. A key conclusion is that differences in capacity classically thought to distinguish IM and VWM are in fact contingent upon a single resource-limited WM store.

    1. Neuroscience
    Emilio Salinas, Bashirul I Sheikh
    Insight

    Our ability to recall details from a remembered image depends on a single mechanism that is engaged from the very moment the image disappears from view.