Structures of diverse poxin cGAMP nucleases reveal a widespread role for cGAS-STING evasion in host-pathogen conflict

  1. James B Eaglesham
  2. Kacie L McCarty
  3. Philip J Kranzusch  Is a corresponding author
  1. Harvard Medical School, Dana-Farber Cancer Institute, United States

Abstract

DNA viruses in the family Poxviridae encode poxin enzymes that degrade the immune second messenger 2′3′-cGAMP to inhibit cGAS-STING immunity in mammalian cells. The closest homologs of poxin exist in the genomes of insect viruses suggesting a key mechanism of cGAS-STING evasion may have evolved outside of mammalian biology. Here we use a biochemical and structural approach to discover a broad family of 369 poxins encoded in diverse viral and animal genomes and define a prominent role for 2′3′-cGAMP cleavage in metazoan host-pathogen conflict. Structures of insect poxins reveal unexpected homology to flavivirus proteases and enable identification of functional self-cleaving poxins in RNA virus polyproteins. Our data suggest widespread 2′3′-cGAMP signaling in insect antiviral immunity and explain how a family of cGAS-STING evasion enzymes evolved from viral proteases through gain of secondary nuclease activity. Poxin acquisition by poxviruses demonstrates the importance of environmental connections in shaping evolution of mammalian pathogens.

Data availability

Diffraction data have been deposited in the PDB under the accession codes 6XB3, 6XB4, 6XB5, and 6XB6.

The following data sets were generated

Article and author information

Author details

  1. James B Eaglesham

    Microbiology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Kacie L McCarty

    Microbiology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Philip J Kranzusch

    Microbiology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, United States
    For correspondence
    philip.kranzusch@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4943-733X

Funding

Richard and Susan Smith Family Foundation

  • Philip J Kranzusch

Cancer Research Institute (Clinic and Laboratory Integration Program)

  • Philip J Kranzusch

Pew Charitable Trusts (Biomedical Scholars Program)

  • Philip J Kranzusch

The Mark Foundation for Cancer Research (Emerging Leader Award)

  • Philip J Kranzusch

The Parker Institute for Cancer Immunotherapy

  • Philip J Kranzusch

National Institutes of Health (T32 Training Grant AI007245)

  • James B Eaglesham

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Nels C. Elde, University of Utah, United States

Version history

  1. Received: June 8, 2020
  2. Accepted: November 12, 2020
  3. Accepted Manuscript published: November 16, 2020 (version 1)
  4. Version of Record published: November 25, 2020 (version 2)

Copyright

© 2020, Eaglesham et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,559
    views
  • 434
    downloads
  • 35
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. James B Eaglesham
  2. Kacie L McCarty
  3. Philip J Kranzusch
(2020)
Structures of diverse poxin cGAMP nucleases reveal a widespread role for cGAS-STING evasion in host-pathogen conflict
eLife 9:e59753.
https://doi.org/10.7554/eLife.59753

Share this article

https://doi.org/10.7554/eLife.59753

Further reading

    1. Microbiology and Infectious Disease
    Michael D Sacco, Lauren R Hammond ... Yu Chen
    Research Article Updated

    In the Firmicutes phylum, GpsB is a membrane associated protein that coordinates peptidoglycan synthesis with cell growth and division. Although GpsB has been studied in several bacteria, the structure, function, and interactome of Staphylococcus aureus GpsB is largely uncharacterized. To address this knowledge gap, we solved the crystal structure of the N-terminal domain of S. aureus GpsB, which adopts an atypical, asymmetric dimer, and demonstrates major conformational flexibility that can be mapped to a hinge region formed by a three-residue insertion exclusive to Staphylococci. When this three-residue insertion is excised, its thermal stability increases, and the mutant no longer produces a previously reported lethal phenotype when overexpressed in Bacillus subtilis. In S. aureus, we show that these hinge mutants are less functional and speculate that the conformational flexibility imparted by the hinge region may serve as a dynamic switch to fine-tune the function of the GpsB complex and/or to promote interaction with its various partners. Furthermore, we provide the first biochemical, biophysical, and crystallographic evidence that the N-terminal domain of GpsB binds not only PBP4, but also FtsZ, through a conserved recognition motif located on their C-termini, thus coupling peptidoglycan synthesis to cell division. Taken together, the unique structure of S. aureus GpsB and its direct interaction with FtsZ/PBP4 provide deeper insight into the central role of GpsB in S. aureus cell division.

    1. Microbiology and Infectious Disease
    Magdalena Podkowik, Andrew I Perault ... Bo Shopsin
    Research Article

    The agr quorum-sensing system links Staphylococcus aureus metabolism to virulence, in part by increasing bacterial survival during exposure to lethal concentrations of H2O2, a crucial host defense against S. aureus. We now report that protection by agr surprisingly extends beyond post-exponential growth to the exit from stationary phase when the agr system is no longer turned on. Thus, agr can be considered a constitutive protective factor. Deletion of agr resulted in decreased ATP levels and growth, despite increased rates of respiration or fermentation at appropriate oxygen tensions, suggesting that Δagr cells undergo a shift towards a hyperactive metabolic state in response to diminished metabolic efficiency. As expected from increased respiratory gene expression, reactive oxygen species (ROS) accumulated more in the agr mutant than in wild-type cells, thereby explaining elevated susceptibility of Δagr strains to lethal H2O2 doses. Increased survival of wild-type agr cells during H2O2 exposure required sodA, which detoxifies superoxide. Additionally, pretreatment of S. aureus with respiration-reducing menadione protected Δagr cells from killing by H2O2. Thus, genetic deletion and pharmacologic experiments indicate that agr helps control endogenous ROS, thereby providing resilience against exogenous ROS. The long-lived ‘memory’ of agr-mediated protection, which is uncoupled from agr activation kinetics, increased hematogenous dissemination to certain tissues during sepsis in ROS-producing, wild-type mice but not ROS-deficient (Cybb−/−) mice. These results demonstrate the importance of protection that anticipates impending ROS-mediated immune attack. The ubiquity of quorum sensing suggests that it protects many bacterial species from oxidative damage.