1. Epidemiology and Global Health
Download icon

Model-based spatial-temporal mapping of opisthorchiasis in endemic countries of Southeast Asia

  1. Ting-Ting Zhao
  2. Yi-Jing Feng
  3. Pham Ngoc Doanh
  4. Somphou Sayasone
  5. Virak Khieu
  6. Choosak Nithikathkul
  7. Men-Bao Qian
  8. Yuan-Tao Hao
  9. Ying-Si Lai  Is a corresponding author
  1. Sun Yat-Sen University, China
  2. Vietnam Academy of Sciences and Technology, Viet Nam
  3. Ministry of Health, Lao People's Democratic Republic
  4. Ministry of Health, Cambodia
  5. Mahasarakham University, Thailand
  6. Chinese Center for Disease Control and Prevention; Ministry of Health, China
Research Article
  • Cited 2
  • Views 425
  • Annotations
Cite this article as: eLife 2021;10:e59755 doi: 10.7554/eLife.59755

Abstract

Opisthorchiasis is an overlooked danger to Southeast Asia. High-resolution disease risk maps are critical but haven't been available for Southeast Asia. Georeferenced disease data and potential influencing factor data were collected through a systematic review of literatures and open-access databases, respectively. Bayesian spatial-temporal joint models were developed to analyze both point- and area-level disease data, within a logit regression in combination of potential influencing factors and spatial-temporal random effects. The model-based risk mapping identified areas of low, moderate and high prevalence across the study region. Even though the overall population-adjusted estimated prevalence presented a trend down, a total of 12.39 million (95% BCI: 10.10-15.06) people were estimated infected with O. viverrini in 2018 in four major endemic countries (i.e., Thailand, Laos, Cambodia, and Vietnam), highlighting the public health importance of the disease in the study region. The high-resolution risk maps provide valuable information for spatial targeting of opisthorchiasis control interventions.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2-7, Figure 2-figure supplement 1, Figure 3-figure supplement 1, Figure 6-figure supplement 1-9.

Article and author information

Author details

  1. Ting-Ting Zhao

    Department of Medical Statistics, School of Public Health, Sun Yat-Sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Yi-Jing Feng

    Department of Medical Statistics, School of Public Health, Sun Yat-Sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Pham Ngoc Doanh

    Department of Parasitology, Institute of Ecology and Biological Resources, Graduate University of Science and Technology, Vietnam Academy of Sciences and Technology, Hanoi, Viet Nam
    Competing interests
    The authors declare that no competing interests exist.
  4. Somphou Sayasone

    Lao Tropical and Public Health Institute, Ministry of Health, Vientiane Capital, Lao People's Democratic Republic
    Competing interests
    The authors declare that no competing interests exist.
  5. Virak Khieu

    National Center for Parasitology, Entomology and Malaria Control, Ministry of Health, Phnom Penh, Cambodia
    Competing interests
    The authors declare that no competing interests exist.
  6. Choosak Nithikathkul

    Tropical and Parasitic Diseases Research Unit, Faculty of Medicine, Mahasarakham University, Mahasarakham, Thailand
    Competing interests
    The authors declare that no competing interests exist.
  7. Men-Bao Qian

    National Institute of Parasitic Diseases; WHO Collaborating Centre for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, Chinese Center for Disease Control and Prevention; Ministry of Health, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Yuan-Tao Hao

    Department of Medical Statistics, School of Public Health; Sun Yat-sen Global Health Institute, Sun Yat-Sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Ying-Si Lai

    Department of Medical Statistics, School of Public Health; Sun Yat-sen Global Health Institute, Sun Yat-Sen University, Guangzhou, China
    For correspondence
    laiys3@mail.sysu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4324-5465

Funding

National Natural Science Foundation of China (81703320)

  • Ying-Si Lai

National Natural Science Foundation of China (82073665)

  • Ying-Si Lai

Natural Science Foundation of Guangdong Province (2017A030313704)

  • Ying-Si Lai

China Medical Board (17-274)

  • Ying-Si Lai

The Sun Yat-Sen University One Hundred Talent Grant

  • Ying-Si Lai

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: This work was based on survey data pertaining to the prevalence of opisthorchiasis extracted from open published peer-reviewed literatures. All data were aggregated and did not contain any information at the individual or household levels. Therefore, there were no specific ethical issues warranted special attention.

Reviewing Editor

  1. Talía Malagón, McGill University, Canada

Publication history

  1. Received: June 7, 2020
  2. Accepted: January 11, 2021
  3. Accepted Manuscript published: January 12, 2021 (version 1)
  4. Version of Record published: February 8, 2021 (version 2)

Copyright

© 2021, Zhao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 425
    Page views
  • 72
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Epidemiology and Global Health
    2. Immunology and Inflammation
    Yansheng Li et al.
    Research Article Updated

    Influenza pandemics pose public health threats annually for lacking vaccine that provides cross-protection against novel and emerging influenza viruses. Combining conserved antigens that induce cross-protective antibody responses with epitopes that activate cross-protective T cell responses might be an attractive strategy for developing a universal vaccine. In this study, we constructed a recombinant protein named NMHC that consists of influenza viral conserved epitopes and a superantigen fragment. NMHC promoted the maturation of bone marrow-derived dendritic cells and induced CD4+ T cells to differentiate into Th1, Th2, and Th17 subtypes. Mice vaccinated with NMHC produced high levels of immunoglobulins that cross-bound to HA fragments from six influenza virus subtypes with high antibody titers. Anti-NMHC serum showed potent hemagglutinin inhibition effects to highly divergent group 1 (H1 subtype) and group 2 (H3 subtype) influenza virus strains. Furthermore, purified anti-NMHC antibodies bound to multiple HAs with high affinities. NMHC vaccination effectively protected mice from infection and lung damage when exposed to two subtypes of H1N1 influenza virus. Moreover, NMHC vaccination elicited CD4+ and CD8+ T cell responses that cleared the virus from infected tissues and prevented virus spread. In conclusion, this study provides proof of concept that NMHC vaccination triggers B and T cell immune responses against multiple influenza virus infections. Therefore, NMHC might be a candidate universal broad-spectrum vaccine for the prevention and treatment of multiple influenza viruses.

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Mark Ferris et al.
    Research Advance Updated

    Background:

    Respiratory protective equipment recommended in the UK for healthcare workers (HCWs) caring for patients with COVID-19 comprises a fluid-resistant surgical mask (FRSM), except in the context of aerosol generating procedures (AGPs). We previously demonstrated frequent pauci- and asymptomatic severe acute respiratory syndrome coronavirus 2 infection HCWs during the first wave of the COVID-19 pandemic in the UK, using a comprehensive PCR-based HCW screening programme (Rivett et al., 2020; Jones et al., 2020).

    Methods:

    Here, we use observational data and mathematical modelling to analyse infection rates amongst HCWs working on ‘red’ (coronavirus disease 2019, COVID-19) and ‘green’ (non-COVID-19) wards during the second wave of the pandemic, before and after the substitution of filtering face piece 3 (FFP3) respirators for FRSMs.

    Results:

    Whilst using FRSMs, HCWs working on red wards faced an approximately 31-fold (and at least fivefold) increased risk of direct, ward-based infection. Conversely, after changing to FFP3 respirators, this risk was significantly reduced (52–100% protection).

    Conclusions:

    FFP3 respirators may therefore provide more effective protection than FRSMs for HCWs caring for patients with COVID-19, whether or not AGPs are undertaken.

    Funding:

    Wellcome Trust, Medical Research Council, Addenbrooke’s Charitable Trust, NIHR Cambridge Biomedical Research Centre, NHS Blood and Transfusion, UKRI.