Genetic timestamping of plasma cells in vivo reveals tissue-specific homeostatic population turnover

  1. An Qi Xu
  2. Rita R Barbosa
  3. Dinis Pedro Calado  Is a corresponding author
  1. The Francis Crick Institute, United Kingdom

Abstract

Plasma cells (PC)s are essential for protection from infection, and at the origin of incurable cancers. Current studies do not circumvent limitations of removing PCs from their microenvironment and confound formation and maintenance. Also, the investigation of PC population dynamics has mostly relied on nucleotide analog incorporation that does not label quiescent cells, a property of most PCs. A main impediment is the lack of tools to perform specific genetic manipulation in vivo. Here we characterize a genetic tool (JchaincreERT2) in the mouse that permits first-ever specific genetic manipulation in PCs in vivo, across immunoglobulin isotypes. Using this tool, we found that splenic and bone marrow PC numbers remained constant over-time with the decay in genetically labelled PCs being compensated by unlabeled PCs, supporting homeostatic population turnover in these tissues. The JchaincreERT2 tool paves the way for in-depth mechanistic understanding of PC biology and pathology in vivo, in their microenvironment.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

The following previously published data sets were used

Article and author information

Author details

  1. An Qi Xu

    Immunity and Cancer, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8008-6462
  2. Rita R Barbosa

    Immunity and Cancer, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Dinis Pedro Calado

    Immunity and Cancer, The Francis Crick Institute, London, United Kingdom
    For correspondence
    dinis.calado@crick.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8239-7184

Funding

Cancer Research UK (FC001057)

  • Dinis Pedro Calado

Medical Research Council (FC001057)

  • Dinis Pedro Calado

Wellcome Trust (FC001057)

  • Dinis Pedro Calado

Cancer Research UK ([C355/A26819])

  • Dinis Pedro Calado

Medical Research Council (MR/J008060/1)

  • Dinis Pedro Calado

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experiments were carried out in accordance with national and institutional guidelines for animal care and were approved by The Francis Crick Institute biological resources facility strategic oversight committee (incorporating the Animal Welfare and Ethical Review Body) and by the Home Office, UK licence number PCE886633. All animal care and procedures followed guidelines of the UK Home Office according to the Animals (Scientific Procedures) Act 1986 and were approved by Biological Research Facility at the Francis Crick Institute.

Copyright

© 2020, Xu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,817
    views
  • 459
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. An Qi Xu
  2. Rita R Barbosa
  3. Dinis Pedro Calado
(2020)
Genetic timestamping of plasma cells in vivo reveals tissue-specific homeostatic population turnover
eLife 9:e59850.
https://doi.org/10.7554/eLife.59850

Share this article

https://doi.org/10.7554/eLife.59850

Further reading

    1. Immunology and Inflammation
    Jyotsna, Binayak Sarkar ... Rajesh S Gokhale
    Research Article

    Hepatic factors secreted by the liver promote homeostasis and are pivotal for maintaining the liver-gut axis. Bile acid metabolism is one such example wherein, bile acid synthesis occurs in the liver and its biotransformation happens in the intestine. Dysfunctional interactions between the liver and the intestine stimulate varied pathological outcomes through its bidirectional portal communication. Indeed, aberrant bile acid metabolism has been reported in inflammatory bowel disease (IBD). However, the molecular mechanisms underlying these crosstalks that perpetuate intestinal permeability and inflammation remain obscure. Here, we identify a novel hepatic gene program regulated by Rela and Stat3 that accentuates the inflammation in an acute experimental colitis model. Hepatocyte-specific ablation of Rela and Stat3 reduces the levels of primary bile acids in both the liver and the gut and shows a restricted colitogenic phenotype. On supplementation of chenodeoxycholic acid (CDCA), knock-out mice exhibit enhanced colitis-induced alterations. This study provides persuasive evidence for the development of multi-organ strategies for treating IBD and identifies a hepatocyte-specific Rela-Stat3 network as a promising therapeutic target.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Rekha R Rapaka
    Insight

    By altering which peptide antigens are presented to CD4+ T cells, adjuvants affect the specificity of the immune response.