Human complex exploration strategies are enriched by noradrenaline-modulated heuristics

Abstract

An exploration-exploitation trade-off, the arbitration between sampling a lesser-known against a known rich option, is thought to be solved using computationally demanding exploration algorithms. Given known limitations in human cognitive resources, we hypothesised the presence of additional cheaper strategies. We examined for such heuristics in choice behaviour where we show this involves a value-free random exploration, that ignores all prior knowledge, and a novelty exploration that targets novel options alone. In a double-blind, placebo-controlled drug study, assessing contributions of dopamine (400mg amisulpride) and noradrenaline (40mg propranolol), we show that value-free random exploration is attenuated under the influence of propranolol, but not under amisulpride. Our findings demonstrate that humans deploy distinct computationally cheap exploration strategies and where value-free random exploration is under noradrenergic control.

Data availability

All necessary resources are publicly available at: https://github.com/MagDub.

Article and author information

Author details

  1. Magda Dubois

    Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
    For correspondence
    magda.dubois.18@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  2. Johanna Habicht

    Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Jochen Michely

    Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Rani Moran

    Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7641-2402
  5. Raymond J Dolan

    The Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9356-761X
  6. Tobias U Hauser

    Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
    For correspondence
    t.hauser@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7997-8137

Funding

Max-Planck-Gesellschaft

  • Magda Dubois

Wellcome Sir Hendry Dale Fellowship (211155/Z/18/Z)

  • Tobias U Hauser

Jacobs Foundation (2017-1261-04)

  • Tobias U Hauser

Wellcome Trust Investigator Award (098362/Z/12/Z)

  • Raymond J Dolan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The study was approved by the UCL research committee (REC No 6218/002) and all subjects provided written informed consent

Copyright

© 2021, Dubois et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Magda Dubois
  2. Johanna Habicht
  3. Jochen Michely
  4. Rani Moran
  5. Raymond J Dolan
  6. Tobias U Hauser
(2021)
Human complex exploration strategies are enriched by noradrenaline-modulated heuristics
eLife 10:e59907.
https://doi.org/10.7554/eLife.59907

Share this article

https://doi.org/10.7554/eLife.59907

Further reading

    1. Neuroscience
    Jian Dong, Mian Chen ... Matthijs Verhage
    Research Article

    Dense core vesicles (DCVs) transport and release various neuropeptides and neurotrophins that control diverse brain functions, but the DCV secretory pathway remains poorly understood. Here, we tested a prediction emerging from invertebrate studies about the crucial role of the intracellular trafficking GTPase Rab10, by assessing DCV exocytosis at single-cell resolution upon acute Rab10 depletion in mature mouse hippocampal neurons, to circumvent potential confounding effects of Rab10’s established role in neurite outgrowth. We observed a significant inhibition of DCV exocytosis in Rab10-depleted neurons, whereas synaptic vesicle exocytosis was unaffected. However, rather than a direct involvement in DCV trafficking, this effect was attributed to two ER-dependent processes, ER-regulated intracellular Ca2+ dynamics, and protein synthesis. Gene Ontology analysis of differentially expressed proteins upon Rab10 depletion identified substantial alterations in synaptic and ER/ribosomal proteins, including the Ca2+ pump SERCA2. In addition, ER morphology and dynamics were altered, ER Ca2+ levels were depleted, and Ca2+ homeostasis was impaired in Rab10-depleted neurons. However, Ca2+ entry using a Ca2+ ionophore still triggered less DCV exocytosis. Instead, leucine supplementation, which enhances protein synthesis, largely rescued DCV exocytosis deficiency. We conclude that Rab10 is required for neuropeptide release by maintaining Ca2+ dynamics and regulating protein synthesis. Furthermore, DCV exocytosis appeared more dependent on (acute) protein synthesis than synaptic vesicle exocytosis.

    1. Neuroscience
    Brian C Ruyle, Sarah Masud ... Jose A Morón
    Research Article

    Millions of Americans suffering from Opioid Use Disorders face a high risk of fatal overdose due to opioid-induced respiratory depression (OIRD). Fentanyl, a powerful synthetic opioid, is a major contributor to the rising rates of overdose deaths. Reversing fentanyl overdoses has proved challenging due to its high potency and the rapid onset of OIRD. We assessed the contributions of central and peripheral mu opioid receptors (MORs) in mediating fentanyl-induced physiological responses. The peripherally restricted MOR antagonist naloxone methiodide (NLXM) both prevented and reversed OIRD to a degree comparable to that of naloxone (NLX), indicating substantial involvement of peripheral MORs to OIRD. Interestingly, NLXM-mediated OIRD reversal did not produce aversive behaviors observed after NLX. We show that neurons in the nucleus of the solitary tract (nTS), the first central synapse of peripheral afferents, exhibit a biphasic activity profile following fentanyl exposure. NLXM pretreatment attenuates this activity, suggesting that these responses are mediated by peripheral MORs. Together, these findings establish a critical role for peripheral MORs, including ascending inputs to the nTS, as sites of dysfunction during OIRD. Furthermore, selective peripheral MOR antagonism could be a promising therapeutic strategy for managing OIRD by sparing CNS-driven acute opioid-associated withdrawal and aversion observed after NLX.