Human complex exploration strategies are enriched by noradrenaline-modulated heuristics

Abstract

An exploration-exploitation trade-off, the arbitration between sampling a lesser-known against a known rich option, is thought to be solved using computationally demanding exploration algorithms. Given known limitations in human cognitive resources, we hypothesised the presence of additional cheaper strategies. We examined for such heuristics in choice behaviour where we show this involves a value-free random exploration, that ignores all prior knowledge, and a novelty exploration that targets novel options alone. In a double-blind, placebo-controlled drug study, assessing contributions of dopamine (400mg amisulpride) and noradrenaline (40mg propranolol), we show that value-free random exploration is attenuated under the influence of propranolol, but not under amisulpride. Our findings demonstrate that humans deploy distinct computationally cheap exploration strategies and where value-free random exploration is under noradrenergic control.

Data availability

All necessary resources are publicly available at: https://github.com/MagDub.

Article and author information

Author details

  1. Magda Dubois

    Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
    For correspondence
    magda.dubois.18@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  2. Johanna Habicht

    Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Jochen Michely

    Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Rani Moran

    Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7641-2402
  5. Raymond J Dolan

    The Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9356-761X
  6. Tobias U Hauser

    Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
    For correspondence
    t.hauser@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7997-8137

Funding

Max-Planck-Gesellschaft

  • Magda Dubois

Wellcome Sir Hendry Dale Fellowship (211155/Z/18/Z)

  • Tobias U Hauser

Jacobs Foundation (2017-1261-04)

  • Tobias U Hauser

Wellcome Trust Investigator Award (098362/Z/12/Z)

  • Raymond J Dolan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The study was approved by the UCL research committee (REC No 6218/002) and all subjects provided written informed consent

Copyright

© 2021, Dubois et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,297
    views
  • 417
    downloads
  • 49
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Magda Dubois
  2. Johanna Habicht
  3. Jochen Michely
  4. Rani Moran
  5. Raymond J Dolan
  6. Tobias U Hauser
(2021)
Human complex exploration strategies are enriched by noradrenaline-modulated heuristics
eLife 10:e59907.
https://doi.org/10.7554/eLife.59907

Share this article

https://doi.org/10.7554/eLife.59907

Further reading

    1. Neuroscience
    Jacob A Miller
    Insight

    When navigating environments with changing rules, human brain circuits flexibly adapt how and where we retain information to help us achieve our immediate goals.

    1. Neuroscience
    Franziska Auer, Katherine Nardone ... David Schoppik
    Research Article

    Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate new approaches to perturb cerebellar function in simpler vertebrates. Here, we adapted a validated chemogenetic tool (TRPV1/capsaicin) to describe the role of Purkinje cells — the output neurons of the cerebellar cortex — as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation modified postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more widespread in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.