Abstract

The advancement of single cell RNA-sequencing technologies has led to an explosion of cell type definitions across multiple organs and organisms. While standards for data and metadata intake are arising, organization of cell types has largely been left to individual investigators, resulting in widely varying nomenclature and limited alignment between taxonomies. To facilitate cross-dataset comparison, the Allen Institute created the Common Cell type Nomenclature (CCN) for matching and tracking cell types across studies that is qualitatively similar to gene transcript management across different genome builds. The CCN can be readily applied to new or established taxonomies and was applied herein to diverse cell type datasets derived from multiple quantifiable modalities. The CCN facilitates assigning accurate yet flexible cell type names in the mammalian cortex as a step towards community-wide efforts to organize multi-source, data-driven information related to cell type taxonomies from any organism.

Data availability

This work describes the creation of a convention that will, with adoption by the community, become a standard. The data cited is open data though the Allen Institute open web portal, https://brain-map.orgAn open Forum is available to engage the community in further development, at https://portal.brain-map.org/explore/classes/nomenclatureData referenced in this study is also made available according the terms of NIH's Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative - Cell Census Network (BICCN), through the Brain Cell Data Center portal, https://biccn.org/ and https://biccn.org/data

The following previously published data sets were used

Article and author information

Author details

  1. Jeremy A Miller

    Allen Institute for Brain Science, Seattle, United States
    For correspondence
    jeremym@alleninstitute.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4549-588X
  2. Nathan W Gouwens

    Allen Institute for Brain Science, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Bosiljka Tasic

    Allen Institute for Brain Science, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6861-4506
  4. Forrest Collman

    Allen Institute for Brain Science, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0280-7022
  5. Cindy TJ van Velthoven

    Allen Institute for Brain Science, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5120-4546
  6. Trygve E Bakken

    Allen Institute for Brain Science, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3373-7386
  7. Michael J Hawrylycz

    Allen Institute for Brain Science, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5741-8024
  8. Hongkui Zeng

    Allen Institute for Brain Science, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0326-5878
  9. Ed S Lein

    Allen Institute for Brain Science, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9012-6552
  10. Amy Bernard

    Allen Institute for Brain Science, Seattle, United States
    For correspondence
    amyb@alleninstitute.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2540-1153

Funding

Allen Institute

  • Jeremy A Miller
  • Nathan W Gouwens
  • Bosiljka Tasic
  • Forrest Collman
  • Cindy TJ van Velthoven
  • Trygve E Bakken
  • Michael J Hawrylycz
  • Hongkui Zeng
  • Ed S Lein
  • Amy Bernard

National Institute of Mental Health (U19MH114830)

  • Hongkui Zeng

National Institute of Mental Health (U01MH114812)

  • Ed S Lein

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Genevieve Konopka, University of Texas Southwestern Medical Center, United States

Version history

  1. Received: June 12, 2020
  2. Accepted: December 28, 2020
  3. Accepted Manuscript published: December 29, 2020 (version 1)
  4. Version of Record published: January 7, 2021 (version 2)

Copyright

© 2020, Miller et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,161
    views
  • 670
    downloads
  • 54
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jeremy A Miller
  2. Nathan W Gouwens
  3. Bosiljka Tasic
  4. Forrest Collman
  5. Cindy TJ van Velthoven
  6. Trygve E Bakken
  7. Michael J Hawrylycz
  8. Hongkui Zeng
  9. Ed S Lein
  10. Amy Bernard
(2020)
Common cell type nomenclature for the mammalian brain
eLife 9:e59928.
https://doi.org/10.7554/eLife.59928

Share this article

https://doi.org/10.7554/eLife.59928

Further reading

    1. Neuroscience
    Vezha Boboeva, Alberto Pezzotta ... Athena Akrami
    Research Article

    The central tendency bias, or contraction bias, is a phenomenon where the judgment of the magnitude of items held in working memory appears to be biased toward the average of past observations. It is assumed to be an optimal strategy by the brain and commonly thought of as an expression of the brain’s ability to learn the statistical structure of sensory input. On the other hand, recency biases such as serial dependence are also commonly observed and are thought to reflect the content of working memory. Recent results from an auditory delayed comparison task in rats suggest that both biases may be more related than previously thought: when the posterior parietal cortex (PPC) was silenced, both short-term and contraction biases were reduced. By proposing a model of the circuit that may be involved in generating the behavior, we show that a volatile working memory content susceptible to shifting to the past sensory experience – producing short-term sensory history biases – naturally leads to contraction bias. The errors, occurring at the level of individual trials, are sampled from the full distribution of the stimuli and are not due to a gradual shift of the memory toward the sensory distribution’s mean. Our results are consistent with a broad set of behavioral findings and provide predictions of performance across different stimulus distributions and timings, delay intervals, as well as neuronal dynamics in putative working memory areas. Finally, we validate our model by performing a set of human psychophysics experiments of an auditory parametric working memory task.

    1. Neuroscience
    Michael Berger, Michèle Fraatz ... Henrike Scholz
    Research Article

    The brain regulates food intake in response to internal energy demands and food availability. However, can internal energy storage influence the type of memory that is formed? We show that the duration of starvation determines whether Drosophila melanogaster forms appetitive short-term or longer-lasting intermediate memories. The internal glycogen storage in the muscles and adipose tissue influences how intensely sucrose-associated information is stored. Insulin-like signaling in octopaminergic reward neurons integrates internal energy storage into memory formation. Octopamine, in turn, suppresses the formation of long-term memory. Octopamine is not required for short-term memory because octopamine-deficient mutants can form appetitive short-term memory for sucrose and to other nutrients depending on the internal energy status. The reduced positive reinforcing effect of sucrose at high internal glycogen levels, combined with the increased stability of food-related memories due to prolonged periods of starvation, could lead to increased food intake.