Abstract

The advancement of single cell RNA-sequencing technologies has led to an explosion of cell type definitions across multiple organs and organisms. While standards for data and metadata intake are arising, organization of cell types has largely been left to individual investigators, resulting in widely varying nomenclature and limited alignment between taxonomies. To facilitate cross-dataset comparison, the Allen Institute created the Common Cell type Nomenclature (CCN) for matching and tracking cell types across studies that is qualitatively similar to gene transcript management across different genome builds. The CCN can be readily applied to new or established taxonomies and was applied herein to diverse cell type datasets derived from multiple quantifiable modalities. The CCN facilitates assigning accurate yet flexible cell type names in the mammalian cortex as a step towards community-wide efforts to organize multi-source, data-driven information related to cell type taxonomies from any organism.

Data availability

This work describes the creation of a convention that will, with adoption by the community, become a standard. The data cited is open data though the Allen Institute open web portal, https://brain-map.orgAn open Forum is available to engage the community in further development, at https://portal.brain-map.org/explore/classes/nomenclatureData referenced in this study is also made available according the terms of NIH's Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative - Cell Census Network (BICCN), through the Brain Cell Data Center portal, https://biccn.org/ and https://biccn.org/data

The following previously published data sets were used

Article and author information

Author details

  1. Jeremy A Miller

    Allen Institute for Brain Science, Seattle, United States
    For correspondence
    jeremym@alleninstitute.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4549-588X
  2. Nathan W Gouwens

    Allen Institute for Brain Science, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Bosiljka Tasic

    Allen Institute for Brain Science, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6861-4506
  4. Forrest Collman

    Allen Institute for Brain Science, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0280-7022
  5. Cindy TJ van Velthoven

    Allen Institute for Brain Science, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5120-4546
  6. Trygve E Bakken

    Allen Institute for Brain Science, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3373-7386
  7. Michael J Hawrylycz

    Allen Institute for Brain Science, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5741-8024
  8. Hongkui Zeng

    Allen Institute for Brain Science, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0326-5878
  9. Ed S Lein

    Allen Institute for Brain Science, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9012-6552
  10. Amy Bernard

    Allen Institute for Brain Science, Seattle, United States
    For correspondence
    amyb@alleninstitute.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2540-1153

Funding

Allen Institute

  • Jeremy A Miller
  • Nathan W Gouwens
  • Bosiljka Tasic
  • Forrest Collman
  • Cindy TJ van Velthoven
  • Trygve E Bakken
  • Michael J Hawrylycz
  • Hongkui Zeng
  • Ed S Lein
  • Amy Bernard

National Institute of Mental Health (U19MH114830)

  • Hongkui Zeng

National Institute of Mental Health (U01MH114812)

  • Ed S Lein

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Miller et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,640
    views
  • 709
    downloads
  • 57
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jeremy A Miller
  2. Nathan W Gouwens
  3. Bosiljka Tasic
  4. Forrest Collman
  5. Cindy TJ van Velthoven
  6. Trygve E Bakken
  7. Michael J Hawrylycz
  8. Hongkui Zeng
  9. Ed S Lein
  10. Amy Bernard
(2020)
Common cell type nomenclature for the mammalian brain
eLife 9:e59928.
https://doi.org/10.7554/eLife.59928

Share this article

https://doi.org/10.7554/eLife.59928

Further reading

    1. Medicine
    2. Neuroscience
    LeYuan Gu, WeiHui Shao ... HongHai Zhang
    Research Article

    The advent of midazolam holds profound implications for modern clinical practice. The hypnotic and sedative effects of midazolam afford it broad clinical applicability. However, the specific mechanisms underlying the modulation of altered consciousness by midazolam remain elusive. Herein, using pharmacology, optogenetics, chemogenetics, fiber photometry, and gene knockdown, this in vivo research revealed the role of locus coeruleus (LC)-ventrolateral preoptic nucleus noradrenergic neural circuit in regulating midazolam-induced altered consciousness. This effect was mediated by α1 adrenergic receptors. Moreover, gamma-aminobutyric acid receptor type A (GABAA-R) represents a mechanistically crucial binding site in the LC for midazolam. These findings will provide novel insights into the neural circuit mechanisms underlying the recovery of consciousness after midazolam administration and will help guide the timing of clinical dosing and propose effective intervention targets for timely recovery from midazolam-induced loss of consciousness.

    1. Neuroscience
    Ana Maria Ichim, Harald Barzan ... Raul Cristian Muresan
    Review Article

    Gamma oscillations in brain activity (30–150 Hz) have been studied for over 80 years. Although in the past three decades significant progress has been made to try to understand their functional role, a definitive answer regarding their causal implication in perception, cognition, and behavior still lies ahead of us. Here, we first review the basic neural mechanisms that give rise to gamma oscillations and then focus on two main pillars of exploration. The first pillar examines the major theories regarding their functional role in information processing in the brain, also highlighting critical viewpoints. The second pillar reviews a novel research direction that proposes a therapeutic role for gamma oscillations, namely the gamma entrainment using sensory stimulation (GENUS). We extensively discuss both the positive findings and the issues regarding reproducibility of GENUS. Going beyond the functional and therapeutic role of gamma, we propose a third pillar of exploration, where gamma, generated endogenously by cortical circuits, is essential for maintenance of healthy circuit function. We propose that four classes of interneurons, namely those expressing parvalbumin (PV), vasointestinal peptide (VIP), somatostatin (SST), and nitric oxide synthase (NOS) take advantage of endogenous gamma to perform active vasomotor control that maintains homeostasis in the neuronal tissue. According to this hypothesis, which we call GAMER (GAmma MEdiated ciRcuit maintenance), gamma oscillations act as a ‘servicing’ rhythm that enables efficient translation of neural activity into vascular responses that are essential for optimal neurometabolic processes. GAMER is an extension of GENUS, where endogenous rather than entrained gamma plays a fundamental role. Finally, we propose several critical experiments to test the GAMER hypothesis.