Mutations primarily alter the inclusion of alternatively spliced exons

  1. Pablo Baeza-Centurion
  2. Belen Minana
  3. Juan Valcarcel  Is a corresponding author
  4. Ben Lehner  Is a corresponding author
  1. Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Spain

Abstract

Genetic analyses and systematic mutagenesis have revealed that synonymous, non-synonymous and intronic mutations frequently alter the inclusion levels of alternatively spliced exons, consistent with the concept that altered splicing might be a common mechanism by which mutations cause disease. However, most exons expressed in any cell are highly-included in mature mRNAs. Here, by performing deep mutagenesis of highly-included exons and by analysing the association between genome sequence variation and exon inclusion across the transcriptome, we report that mutations only very rarely alter the inclusion of highly-included exons. This is true for both exonic and intronic mutations as well as for perturbations in trans. Therefore, mutations that affect splicing are not evenly distributed across primary transcripts but are focussed in and around alternatively spliced exons with intermediate inclusion levels. These results provide a resource for prioritising synonymous and other variants as disease-causing mutations.

Data availability

Raw sequencing data have been submitted to GEO with accession number GSE151942. All scripts used in this study are available at https://github.com/lehner-lab/Constitutive_Exons.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Pablo Baeza-Centurion

    Systems Biology, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
    Competing interests
    No competing interests declared.
  2. Belen Minana

    Gene Regulation, Stem cells and Cancer, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
    Competing interests
    No competing interests declared.
  3. Juan Valcarcel

    Systems Biology, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
    For correspondence
    juan.valcarcel@crg.eu
    Competing interests
    Juan Valcarcel, Reviewing editor, eLife.
  4. Ben Lehner

    Systems Biology, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
    For correspondence
    ben.lehner@crg.eu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8817-1124

Funding

ERC (ERC 616434)

  • Ben Lehner

ERC (ERC 670146)

  • Belen Minana

Ministerio de Economía y Competitividad (BFU2017-89488-P)

  • Ben Lehner

Ministerio de Economía y Competitividad (BFU 2017 89308-P)

  • Juan Valcarcel

Banco Santander (Fundación Botín)

  • Juan Valcarcel

Fondation Bettencourt Schueller (Liliane Bettencourt Prize for Life Sciences)

  • Ben Lehner

Ministerio de Economía y Competitividad (Severo Ochoa PhD fellowship)

  • Pablo Baeza-Centurion

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Chris P Ponting, University of Edinburgh, United Kingdom

Publication history

  1. Received: June 12, 2020
  2. Accepted: October 27, 2020
  3. Accepted Manuscript published: October 28, 2020 (version 1)
  4. Version of Record published: November 18, 2020 (version 2)

Copyright

© 2020, Baeza-Centurion et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,843
    Page views
  • 353
    Downloads
  • 11
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pablo Baeza-Centurion
  2. Belen Minana
  3. Juan Valcarcel
  4. Ben Lehner
(2020)
Mutations primarily alter the inclusion of alternatively spliced exons
eLife 9:e59959.
https://doi.org/10.7554/eLife.59959

Further reading

    1. Evolutionary Biology
    2. Genetics and Genomics
    Xinzhu Wei, Christopher R Robles ... Sriram Sankararaman
    Research Article

    The genetic variants introduced into the ancestors of modern humans from interbreeding with Neanderthals have been suggested to contribute an unexpected extent to complex human traits. However, testing this hypothesis has been challenging due to the idiosyncratic population genetic properties of introgressed variants. We developed rigorous methods to assess the contribution of introgressed Neanderthal variants to heritable trait variation relative to that of modern human variants. We applied these methods to analyze 235,592 introgressed Neanderthal variants and 96 distinct phenotypes measured in about 300,000 unrelated white British individuals in the UK Biobank. Introgressed Neanderthal variants have a significant contribution to trait variation consistent with the polygenic architecture of complex phenotypes (contributing 0.12% of heritable variation averaged across phenotypes). However, the contribution of introgressed variants tends to be significantly depleted relative to modern human variants matched for allele frequency and linkage disequilibrium (about 59% depletion on average), consistent with purifying selection on introgressed variants. Different from previous studies (McArthur 2021), we find no evidence for elevated heritability across the phenotypes examined. We identified 348 independent significant associations of introgressed Neanderthal variants with 64 phenotypes . Previous work (Skov 2020) has suggested that a majority of such associations are likely driven by statistical association with nearby modern human variants that are the true causal variants. We therefore developed a customized statistical fine-mapping methodology for introgressed variants that led us to identify 112 regions (at a false discovery proportion of 16%) across 47 phenotypes containing 4,303 unique genetic variants where introgressed variants are highly likely to have a phenotypic effect. Examination of these variants reveal their substantial impact on genes that are important for the immune system, development, and metabolism. Our results provide the first rigorous basis for understanding how Neanderthal introgression modulates complex trait variation in present-day humans.

    1. Genetics and Genomics
    Shannon E Wright, Peter K Todd
    Review Article

    Over a third of the human genome is comprised of repetitive sequences, including more than a million short tandem repeats (STRs). While studies of the pathologic consequences of repeat expansions that cause syndromic human diseases are extensive, the potential native functions of STRs are often ignored. Here, we summarize a growing body of research into the normal biological functions for repetitive elements across the genome, with a particular focus on the roles of STRs in regulating gene expression. We propose reconceptualizing the pathogenic consequences of repeat expansions as aberrancies in normal gene regulation. From this altered viewpoint, we predict that future work will reveal broader roles for STRs in neuronal function and as risk alleles for more common human neurological diseases.