Ribosome recycling is not critical for translational coupling in E. coli

  1. Kazuki Saito
  2. Rachel Green
  3. Allen R Buskirk  Is a corresponding author
  1. Johns Hopkins University School of Medicine, United States
  2. Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, United States

Abstract

We used ribosome profiling to characterize the biological role of ribosome recycling factor (RRF) in E. coli. As expected, RRF depletion leads to enrichment of post-termination 70S complexes in 3'-UTRs. We also observe that elongating ribosomes are unable to complete translation because they are blocked by non-recycled ribosomes at stop codons. Previous studies have suggested a role for recycling in translational coupling within operons; if a ribosome remains bound to an mRNA after termination, it may re-initiate downstream. We found, however, that RRF depletion did not significantly affect coupling efficiency in reporter assays or in ribosome density genome-wide. These findings argue that re-initiation is not a major mechanism of translational coupling in E. coli. Finally, RRF depletion has dramatic effects on the activity of ribosome rescue factors tmRNA and ArfA. Our results provide a global view of the effects of the loss of ribosome recycling on protein synthesis in E. coli.

Data availability

Sequencing data have been deposited in GEO under accession codes GSE151688.

The following data sets were generated

Article and author information

Author details

  1. Kazuki Saito

    Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  2. Rachel Green

    Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    Rachel Green, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9337-2003
  3. Allen R Buskirk

    Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
    For correspondence
    buskirk@jhmi.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2720-6896

Funding

National Institute of General Medical Sciences (GM110113)

  • Allen R Buskirk

Howard Hughes Medical Institute

  • Rachel Green

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Joseph T Wade, Wadsworth Center, New York State Department of Health, United States

Version history

  1. Received: June 13, 2020
  2. Accepted: September 22, 2020
  3. Accepted Manuscript published: September 23, 2020 (version 1)
  4. Version of Record published: October 6, 2020 (version 2)

Copyright

© 2020, Saito et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,552
    Page views
  • 422
    Downloads
  • 14
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kazuki Saito
  2. Rachel Green
  3. Allen R Buskirk
(2020)
Ribosome recycling is not critical for translational coupling in E. coli
eLife 9:e59974.
https://doi.org/10.7554/eLife.59974

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    James T Anderson, Steven Henikoff, Kami Ahmad
    Research Article

    Spermatogenesis in the Drosophila male germline proceeds through a unique transcriptional program controlled both by germline-specific transcription factors and by testis-specific versions of core transcriptional machinery. This program includes the activation of genes on the heterochromatic Y chromosome, and reduced transcription from the X chromosome, but how expression from these sex chromosomes is regulated has not been defined. To resolve this, we profiled active chromatin features in the testes from wildtype and meiotic arrest mutants and integrate this with single-cell gene expression data from the Fly Cell Atlas. These data assign the timing of promoter activation for genes with germline-enriched expression throughout spermatogenesis, and general alterations of promoter regulation in germline cells. By profiling both active RNA polymerase II and histone modifications in isolated spermatocytes, we detail widespread patterns associated with regulation of the sex chromosomes. Our results demonstrate that the X chromosome is not enriched for silencing histone modifications, implying that sex chromosome inactivation does not occur in the Drosophila male germline. Instead, a lack of dosage compensation in spermatocytes accounts for the reduced expression from this chromosome. Finally, profiling uncovers dramatic ubiquitinylation of histone H2A and lysine-16 acetylation of histone H4 across the Y chromosome in spermatocytes that may contribute to the activation of this heterochromatic chromosome.

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    Virginia L Pimmett, Mounia Lagha
    Insight

    Imaging experiments reveal the complex and dynamic nature of the transcriptional hubs associated with Notch signaling.