Distinct subpopulations of mechanosensory chordotonal organ neurons elicit grooming of the fruit fly antennae

  1. Stefanie Hampel  Is a corresponding author
  2. Katharina Eichler
  3. Daichi Yamada
  4. Davi Bock
  5. Azusa Kamikouchi
  6. Andrew M Seeds  Is a corresponding author
  1. University of Puerto Rico Medical Sciences Campus, Puerto Rico
  2. Nagoya University, Japan
  3. University of Vermont, United States

Abstract

Diverse mechanosensory neurons detect different mechanical forces that can impact animal behavior. Yet our understanding of the anatomical and physiological diversity of these neurons and the behaviors that they influence is limited. We previously discovered that grooming of the Drosophila melanogaster antennae is elicited by an antennal mechanosensory chordotonal organ, the Johnston's organ (JO) (Hampel et al., 2015). Here, we describe anatomically and physiologically distinct JO mechanosensory neuron subpopulations that each elicit antennal grooming. We show that the subpopulations project to different, discrete zones in the brain and differ in their responses to mechanical stimulation of the antennae. Although activation of each subpopulation elicits antennal grooming, distinct subpopulations also elicit the additional behaviors of wing flapping or backward locomotion. Our results provide a comprehensive description of the diversity of mechanosensory neurons in the JO, and reveal that distinct JO subpopulations can elicit both common and distinct behavioral responses.

Data availability

Neuron reconstructions will be made available on https://v2.virtualflybrain.org/

The following previously published data sets were used

Article and author information

Author details

  1. Stefanie Hampel

    Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
    For correspondence
    stef.hampel@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8287-549X
  2. Katharina Eichler

    Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7833-8621
  3. Daichi Yamada

    Division of Biological Science, Nagoya University, Nagoya, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Davi Bock

    Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8218-7926
  5. Azusa Kamikouchi

    Graduate School of Science, Nagoya University, Nagoya, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1552-6892
  6. Andrew M Seeds

    Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
    For correspondence
    seeds.andrew@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4932-6496

Funding

Whitehall Foundation (2017-12-69)

  • Andrew M Seeds

National Institute on Minority Health and Health Disparities (MD007600)

  • Andrew M Seeds

National Institute of General Medical Sciences (GM103642)

  • Stefanie Hampel
  • Andrew M Seeds

Puerto Rico Science, Technology and Research Trust (2020-00195)

  • Andrew M Seeds

National Science Foundation (HRD-1736019)

  • Andrew M Seeds

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ronald L Calabrese, Emory University, United States

Publication history

  1. Received: June 15, 2020
  2. Accepted: October 25, 2020
  3. Accepted Manuscript published: October 26, 2020 (version 1)
  4. Version of Record published: November 9, 2020 (version 2)

Copyright

© 2020, Hampel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,083
    Page views
  • 266
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Stefanie Hampel
  2. Katharina Eichler
  3. Daichi Yamada
  4. Davi Bock
  5. Azusa Kamikouchi
  6. Andrew M Seeds
(2020)
Distinct subpopulations of mechanosensory chordotonal organ neurons elicit grooming of the fruit fly antennae
eLife 9:e59976.
https://doi.org/10.7554/eLife.59976
  1. Further reading

Further reading

    1. Cell Biology
    2. Neuroscience
    Ge Gao, Shuyu Guo ... Gang Peng
    Research Article Updated

    Unbiased genetic screens implicated a number of uncharacterized genes in hearing loss, suggesting some biological processes required for auditory function remain unexplored. Loss of Kiaa1024L/Minar2, a previously understudied gene, caused deafness in mice, but how it functioned in the hearing was unclear. Here, we show that disruption of kiaa1024L/minar2 causes hearing loss in the zebrafish. Defects in mechanotransduction, longer and thinner hair bundles, and enlarged apical lysosomes in hair cells are observed in the kiaa1024L/minar2 mutant. In cultured cells, Kiaa1024L/Minar2 is mainly localized to lysosomes, and its overexpression recruits cholesterol and increases cholesterol labeling. Strikingly, cholesterol is highly enriched in the hair bundle membrane, and loss of kiaa1024L/minar2 reduces cholesterol localization to the hair bundles. Lowering cholesterol levels aggravates, while increasing cholesterol levels rescues the hair cell defects in the kiaa1024L/minar2 mutant. Therefore, cholesterol plays an essential role in hair bundles, and Kiaa1024L/Minar2 regulates cholesterol distribution and homeostasis to ensure normal hearing.

    1. Neuroscience
    Sophie L Fayad, Guillaume Ourties ... Nathalie Leresche
    Research Article Updated

    Cav3.2 T-type calcium channel is a major molecular actor of neuropathic pain in peripheral sensory neurons, but its involvement at the supraspinal level is almost unknown. In the anterior pretectum (APT), a hub of connectivity of the somatosensory system involved in pain perception, we show that Cav3.2 channels are expressed in a subpopulation of GABAergic neurons coexpressing parvalbumin (PV). In these PV-expressing neurons, Cav3.2 channels contribute to a high-frequency-bursting activity, which is increased in the spared nerve injury model of neuropathy. Specific deletion of Cav3.2 channels in APT neurons reduced both the initiation and maintenance of mechanical and cold allodynia. These data are a direct demonstration that centrally expressed Cav3.2 channels also play a fundamental role in pain pathophysiology.