Integration of genomics and transcriptomics predicts diabetic retinopathy susceptibility genes

  1. Andrew D Skol
  2. Segun C Jung
  3. Ana Marija Sokovic
  4. Siquan Chen
  5. Sarah Fazal
  6. Olukayode Sosina
  7. Poulami P Borkar
  8. Amy Lin
  9. Maria Sverdlov
  10. Dingcai Cao
  11. Anand Swaroop
  12. Ionut Bebu
  13. DCCT/ EDIC Study group
  14. Barbara E Stranger  Is a corresponding author
  15. Michael A Grassi  Is a corresponding author
  1. Ann and Robert H Lurie Children's Hospital of Chicago,, United States
  2. NeoGenomics Laboratories, United States
  3. University Of Illinois at Chicago, United States
  4. The University of Chicago, United States
  5. Johns Hopkins University, United States
  6. National Institutes of Health, United States
  7. The George Washington University, United States
  8. Northwestern University Feinberg School of Medicine, United States

Abstract

We determined differential gene expression in response to high glucose in lymphoblastoid cell lines derived from matched individuals with type 1 diabetes with and without retinopathy. Those genes exhibiting the largest difference in glucose response were assessed for association to diabetic retinopathy in a genome-wide association study meta-analysis. Expression Quantitative Trait Loci (eQTLs) of the glucose response genes were tested for association with diabetic retinopathy. We detected an enrichment of the eQTLs from the glucose response genes among small association p-values and identified FLCN as a susceptibility gene for diabetic retinopathy. Expression of FLCN in response to glucose was greater in individuals with diabetic retinopathy. Independent cohorts of individuals with diabetes revealed an association of FLCN eQTLs to diabetic retinopathy. Mendelian randomization confirmed a direct positive effect of increased FLCN expression on retinopathy. Integrating genetic association with gene expression implicated FLCN as a disease gene for diabetic retinopathy.

Data availability

Source files and code for all the figures and tables have been provided, except for drawings, flowcharts and histopathology findings. We have also included links and references where appropriate.Figure 3 source data 5 and 6 are available on Dryad at https://doi.org/10.5061/dryad.zkh18938jAdditional data files can be found here: microarray expression data at Gene Expression Omnibus (GEO) under accession code GSE146615 and diabetic retinopathy GWAS data at UKBB archive (https://oxfile.ox.ac.uk/oxfile/work/extBox?id=825146B4380F72048D).

The following data sets were generated
    1. Skol A et al
    (2020) Figure 3 additional source data files
    Dryad Digital Repository, doi:10.5061/dryad.zkh18938j.
The following previously published data sets were used

Article and author information

Author details

  1. Andrew D Skol

    Department of Pathology and Laboratory Medicine, Ann and Robert H Lurie Children's Hospital of Chicago,, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Segun C Jung

    Research and Development, NeoGenomics Laboratories, Aliso Viejo, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ana Marija Sokovic

    Ophthalmology and Visual Sciences, University Of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Siquan Chen

    Cellular Screening Center, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sarah Fazal

    Cellular Screening Center, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Olukayode Sosina

    Department of Biostatistics, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Poulami P Borkar

    Ophthalmology and Visual Sciences, University Of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Amy Lin

    Ophthalmology and Visual Sciences, University Of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Maria Sverdlov

    Research Histology and Tissue Imaging Core, University Of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Dingcai Cao

    Ophthalmology and Visual Sciences, University Of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Anand Swaroop

    National Eye Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1975-1141
  12. Ionut Bebu

    Biostatistics Center, The George Washington University, Rockville, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. DCCT/ EDIC Study group

  14. Barbara E Stranger

    Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, United States
    For correspondence
    barbara.stranger@northwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
  15. Michael A Grassi

    Ophthalmology and Visual Sciences, University Of Illinois at Chicago, Chicago, United States
    For correspondence
    grassim@uic.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8467-3223

Funding

National Eye Institute (R01EY023644)

  • Michael A Grassi

National Eye Institute (ZIAEY000546)

  • Anand Swaroop

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Skol et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,588
    views
  • 422
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrew D Skol
  2. Segun C Jung
  3. Ana Marija Sokovic
  4. Siquan Chen
  5. Sarah Fazal
  6. Olukayode Sosina
  7. Poulami P Borkar
  8. Amy Lin
  9. Maria Sverdlov
  10. Dingcai Cao
  11. Anand Swaroop
  12. Ionut Bebu
  13. DCCT/ EDIC Study group
  14. Barbara E Stranger
  15. Michael A Grassi
(2020)
Integration of genomics and transcriptomics predicts diabetic retinopathy susceptibility genes
eLife 9:e59980.
https://doi.org/10.7554/eLife.59980

Share this article

https://doi.org/10.7554/eLife.59980

Further reading

    1. Genetics and Genomics
    Angela M Tuckowski, Safa Beydoun ... Scott F Leiser
    Research Article

    Flavin-containing monooxygenases (FMOs) are a conserved family of xenobiotic enzymes upregulated in multiple longevity interventions, including nematode and mouse models. Previous work supports that C. elegans fmo-2 promotes longevity, stress resistance, and healthspan by rewiring endogenous metabolism. However, there are five C. elegans FMOs and five mammalian FMOs, and it is not known whether promoting longevity and health benefits is a conserved role of this gene family. Here, we report that expression of C. elegans fmo-4 promotes lifespan extension and paraquat stress resistance downstream of both dietary restriction and inhibition of mTOR. We find that overexpression of fmo-4 in just the hypodermis is sufficient for these benefits, and that this expression significantly modifies the transcriptome. By analyzing changes in gene expression, we find that genes related to calcium signaling are significantly altered downstream of fmo-4 expression. Highlighting the importance of calcium homeostasis in this pathway, fmo-4 overexpressing animals are sensitive to thapsigargin, an ER stressor that inhibits calcium flux from the cytosol to the ER lumen. This calcium/fmo-4 interaction is solidified by data showing that modulating intracellular calcium with either small molecules or genetics can change expression of fmo-4 and/or interact with fmo-4 to affect lifespan and stress resistance. Further analysis supports a pathway where fmo-4 modulates calcium homeostasis downstream of activating transcription factor-6 (atf-6), whose knockdown induces and requires fmo-4 expression. Together, our data identify fmo-4 as a longevity-promoting gene whose actions interact with known longevity pathways and calcium homeostasis.

    1. Genetics and Genomics
    Junhong Choi, Wei Chen ... Jay Shendure
    Research Article

    One of the goals of synthetic biology is to enable the design of arbitrary molecular circuits with programmable inputs and outputs. Such circuits bridge the properties of electronic and natural circuits, processing information in a predictable manner within living cells. Genome editing is a potentially powerful component of synthetic molecular circuits, whether for modulating the expression of a target gene or for stably recording information to genomic DNA. However, programming molecular events such as protein-protein interactions or induced proximity as triggers for genome editing remains challenging. Here, we demonstrate a strategy termed ‘P3 editing’, which links protein-protein proximity to the formation of a functional CRISPR-Cas9 dual-component guide RNA. By engineering the crRNA:tracrRNA interaction, we demonstrate that various known protein-protein interactions, as well as the chemically induced dimerization of protein domains, can be used to activate prime editing or base editing in human cells. Additionally, we explore how P3 editing can incorporate outputs from ADAR-based RNA sensors, potentially allowing specific RNAs to induce specific genome edits within a larger circuit. Our strategy enhances the controllability of CRISPR-based genome editing, facilitating its use in synthetic molecular circuits deployed in living cells.