Integration of genomics and transcriptomics predicts diabetic retinopathy susceptibility genes

  1. Andrew D Skol
  2. Segun C Jung
  3. Ana Marija Sokovic
  4. Siquan Chen
  5. Sarah Fazal
  6. Olukayode Sosina
  7. Poulami P Borkar
  8. Amy Lin
  9. Maria Sverdlov
  10. Dingcai Cao
  11. Anand Swaroop
  12. Ionut Bebu
  13. DCCT/ EDIC Study group
  14. Barbara E Stranger  Is a corresponding author
  15. Michael A Grassi  Is a corresponding author
  1. Ann and Robert H Lurie Children's Hospital of Chicago,, United States
  2. NeoGenomics Laboratories, United States
  3. University Of Illinois at Chicago, United States
  4. The University of Chicago, United States
  5. Johns Hopkins University, United States
  6. National Institutes of Health, United States
  7. The George Washington University, United States
  8. Northwestern University Feinberg School of Medicine, United States

Abstract

We determined differential gene expression in response to high glucose in lymphoblastoid cell lines derived from matched individuals with type 1 diabetes with and without retinopathy. Those genes exhibiting the largest difference in glucose response were assessed for association to diabetic retinopathy in a genome-wide association study meta-analysis. Expression Quantitative Trait Loci (eQTLs) of the glucose response genes were tested for association with diabetic retinopathy. We detected an enrichment of the eQTLs from the glucose response genes among small association p-values and identified FLCN as a susceptibility gene for diabetic retinopathy. Expression of FLCN in response to glucose was greater in individuals with diabetic retinopathy. Independent cohorts of individuals with diabetes revealed an association of FLCN eQTLs to diabetic retinopathy. Mendelian randomization confirmed a direct positive effect of increased FLCN expression on retinopathy. Integrating genetic association with gene expression implicated FLCN as a disease gene for diabetic retinopathy.

Data availability

Source files and code for all the figures and tables have been provided, except for drawings, flowcharts and histopathology findings. We have also included links and references where appropriate.Figure 3 source data 5 and 6 are available on Dryad at https://doi.org/10.5061/dryad.zkh18938jAdditional data files can be found here: microarray expression data at Gene Expression Omnibus (GEO) under accession code GSE146615 and diabetic retinopathy GWAS data at UKBB archive (https://oxfile.ox.ac.uk/oxfile/work/extBox?id=825146B4380F72048D).

The following data sets were generated
    1. Skol A et al
    (2020) Figure 3 additional source data files
    Dryad Digital Repository, doi:10.5061/dryad.zkh18938j.
The following previously published data sets were used

Article and author information

Author details

  1. Andrew D Skol

    Department of Pathology and Laboratory Medicine, Ann and Robert H Lurie Children's Hospital of Chicago,, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Segun C Jung

    Research and Development, NeoGenomics Laboratories, Aliso Viejo, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ana Marija Sokovic

    Ophthalmology and Visual Sciences, University Of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Siquan Chen

    Cellular Screening Center, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sarah Fazal

    Cellular Screening Center, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Olukayode Sosina

    Department of Biostatistics, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Poulami P Borkar

    Ophthalmology and Visual Sciences, University Of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Amy Lin

    Ophthalmology and Visual Sciences, University Of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Maria Sverdlov

    Research Histology and Tissue Imaging Core, University Of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Dingcai Cao

    Ophthalmology and Visual Sciences, University Of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Anand Swaroop

    National Eye Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1975-1141
  12. Ionut Bebu

    Biostatistics Center, The George Washington University, Rockville, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. DCCT/ EDIC Study group

  14. Barbara E Stranger

    Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, United States
    For correspondence
    barbara.stranger@northwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
  15. Michael A Grassi

    Ophthalmology and Visual Sciences, University Of Illinois at Chicago, Chicago, United States
    For correspondence
    grassim@uic.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8467-3223

Funding

National Eye Institute (R01EY023644)

  • Michael A Grassi

National Eye Institute (ZIAEY000546)

  • Anand Swaroop

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Skol et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrew D Skol
  2. Segun C Jung
  3. Ana Marija Sokovic
  4. Siquan Chen
  5. Sarah Fazal
  6. Olukayode Sosina
  7. Poulami P Borkar
  8. Amy Lin
  9. Maria Sverdlov
  10. Dingcai Cao
  11. Anand Swaroop
  12. Ionut Bebu
  13. DCCT/ EDIC Study group
  14. Barbara E Stranger
  15. Michael A Grassi
(2020)
Integration of genomics and transcriptomics predicts diabetic retinopathy susceptibility genes
eLife 9:e59980.
https://doi.org/10.7554/eLife.59980

Share this article

https://doi.org/10.7554/eLife.59980

Further reading

    1. Genetics and Genomics
    Yi Li, Long Gong ... Shangbang Gao
    Research Article

    Resistance to anthelmintics, particularly the macrocyclic lactone ivermectin (IVM), presents a substantial global challenge for parasite control. We found that the functional loss of an evolutionarily conserved E3 ubiquitin ligase, UBR-1, leads to IVM resistance in Caenorhabditis elegans. Multiple IVM-inhibiting activities, including viability, body size, pharyngeal pumping, and locomotion, were significantly ameliorated in various ubr-1 mutants. Interestingly, exogenous application of glutamate induces IVM resistance in wild-type animals. The sensitivity of all IVM-affected phenotypes of ubr-1 is restored by eliminating proteins associated with glutamate metabolism or signaling: GOT-1, a transaminase that converts aspartate to glutamate, and EAT-4, a vesicular glutamate transporter. We demonstrated that IVM-targeted GluCls (glutamate-gated chloride channels) are downregulated and that the IVM-mediated inhibition of serotonin-activated pharynx Ca2+ activity is diminished in ubr-1. Additionally, enhancing glutamate uptake in ubr-1 mutants through ceftriaxone completely restored their IVM sensitivity. Therefore, UBR-1 deficiency-mediated aberrant glutamate signaling leads to ivermectin resistance in C. elegans.

    1. Genetics and Genomics
    Minsoo Noh, Xiangguo Che ... Sihoon Lee
    Research Article

    Osteoporosis, characterized by reduced bone density and strength, increases fracture risk, pain, and limits mobility. Established therapies of parathyroid hormone (PTH) analogs effectively promote bone formation and reduce fractures in severe osteoporosis, but their use is limited by potential adverse effects. In the pursuit of safer osteoporosis treatments, we investigated R25CPTH, a PTH variant wherein the native arginine at position 25 is substituted by cysteine. These studies were prompted by our finding of high bone mineral density in a hypoparathyroidism patient with the R25C homozygous mutation, and we explored its effects on PTH type-1 receptor (PTH1R) signaling in cells and bone metabolism in mice. Our findings indicate that R25CPTH(1–84) forms dimers both intracellularly and extracellularly, and the synthetic dimeric peptide, R25CPTH(1–34), exhibits altered activity in PTH1R-mediated cyclic AMP (cAMP) response. Upon a single injection in mice, dimeric R25CPTH(1–34) induced acute calcemic and phosphaturic responses comparable to PTH(1–34). Furthermore, repeated daily injections increased calvarial bone thickness in intact mice and improved trabecular and cortical bone parameters in ovariectomized (OVX) mice, akin to PTH(1–34). The overall results reveal a capacity of a dimeric PTH peptide ligand to activate the PTH1R in vitro and in vivo as PTH, suggesting a potential path of therapeutic PTH analog development.