Integration of genomics and transcriptomics predicts diabetic retinopathy susceptibility genes

  1. Andrew D Skol
  2. Segun C Jung
  3. Ana Marija Sokovic
  4. Siquan Chen
  5. Sarah Fazal
  6. Olukayode Sosina
  7. Poulami P Borkar
  8. Amy Lin
  9. Maria Sverdlov
  10. Dingcai Cao
  11. Anand Swaroop
  12. Ionut Bebu
  13. DCCT/ EDIC Study group
  14. Barbara E Stranger  Is a corresponding author
  15. Michael A Grassi  Is a corresponding author
  1. Ann and Robert H Lurie Children's Hospital of Chicago,, United States
  2. NeoGenomics Laboratories, United States
  3. University Of Illinois at Chicago, United States
  4. The University of Chicago, United States
  5. Johns Hopkins University, United States
  6. National Institutes of Health, United States
  7. The George Washington University, United States
  8. Northwestern University Feinberg School of Medicine, United States

Abstract

We determined differential gene expression in response to high glucose in lymphoblastoid cell lines derived from matched individuals with type 1 diabetes with and without retinopathy. Those genes exhibiting the largest difference in glucose response were assessed for association to diabetic retinopathy in a genome-wide association study meta-analysis. Expression Quantitative Trait Loci (eQTLs) of the glucose response genes were tested for association with diabetic retinopathy. We detected an enrichment of the eQTLs from the glucose response genes among small association p-values and identified FLCN as a susceptibility gene for diabetic retinopathy. Expression of FLCN in response to glucose was greater in individuals with diabetic retinopathy. Independent cohorts of individuals with diabetes revealed an association of FLCN eQTLs to diabetic retinopathy. Mendelian randomization confirmed a direct positive effect of increased FLCN expression on retinopathy. Integrating genetic association with gene expression implicated FLCN as a disease gene for diabetic retinopathy.

Data availability

Source files and code for all the figures and tables have been provided, except for drawings, flowcharts and histopathology findings. We have also included links and references where appropriate.Figure 3 source data 5 and 6 are available on Dryad at https://doi.org/10.5061/dryad.zkh18938jAdditional data files can be found here: microarray expression data at Gene Expression Omnibus (GEO) under accession code GSE146615 and diabetic retinopathy GWAS data at UKBB archive (https://oxfile.ox.ac.uk/oxfile/work/extBox?id=825146B4380F72048D).

The following data sets were generated
    1. Skol A et al
    (2020) Figure 3 additional source data files
    Dryad Digital Repository, doi:10.5061/dryad.zkh18938j.
The following previously published data sets were used

Article and author information

Author details

  1. Andrew D Skol

    Department of Pathology and Laboratory Medicine, Ann and Robert H Lurie Children's Hospital of Chicago,, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Segun C Jung

    Research and Development, NeoGenomics Laboratories, Aliso Viejo, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ana Marija Sokovic

    Ophthalmology and Visual Sciences, University Of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Siquan Chen

    Cellular Screening Center, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sarah Fazal

    Cellular Screening Center, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Olukayode Sosina

    Department of Biostatistics, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Poulami P Borkar

    Ophthalmology and Visual Sciences, University Of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Amy Lin

    Ophthalmology and Visual Sciences, University Of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Maria Sverdlov

    Research Histology and Tissue Imaging Core, University Of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Dingcai Cao

    Ophthalmology and Visual Sciences, University Of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Anand Swaroop

    National Eye Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1975-1141
  12. Ionut Bebu

    Biostatistics Center, The George Washington University, Rockville, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. DCCT/ EDIC Study group

  14. Barbara E Stranger

    Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, United States
    For correspondence
    barbara.stranger@northwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
  15. Michael A Grassi

    Ophthalmology and Visual Sciences, University Of Illinois at Chicago, Chicago, United States
    For correspondence
    grassim@uic.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8467-3223

Funding

National Eye Institute (R01EY023644)

  • Michael A Grassi

National Eye Institute (ZIAEY000546)

  • Anand Swaroop

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Skol et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,550
    views
  • 411
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrew D Skol
  2. Segun C Jung
  3. Ana Marija Sokovic
  4. Siquan Chen
  5. Sarah Fazal
  6. Olukayode Sosina
  7. Poulami P Borkar
  8. Amy Lin
  9. Maria Sverdlov
  10. Dingcai Cao
  11. Anand Swaroop
  12. Ionut Bebu
  13. DCCT/ EDIC Study group
  14. Barbara E Stranger
  15. Michael A Grassi
(2020)
Integration of genomics and transcriptomics predicts diabetic retinopathy susceptibility genes
eLife 9:e59980.
https://doi.org/10.7554/eLife.59980

Share this article

https://doi.org/10.7554/eLife.59980

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Anne-Sophie Pepin, Patrycja A Jazwiec ... Sarah Kimmins
    Research Article Updated

    Paternal obesity has been implicated in adult-onset metabolic disease in offspring. However, the molecular mechanisms driving these paternal effects and the developmental processes involved remain poorly understood. One underexplored possibility is the role of paternally induced effects on placenta development and function. To address this, we investigated paternal high-fat diet-induced obesity in relation to sperm histone H3 lysine 4 tri-methylation signatures, the placenta transcriptome, and cellular composition. C57BL6/J male mice were fed either a control or high-fat diet for 10 weeks beginning at 6 weeks of age. Males were timed-mated with control-fed C57BL6/J females to generate pregnancies, followed by collection of sperm, and placentas at embryonic day (E)14.5. Chromatin immunoprecipitation targeting histone H3 lysine 4 tri-methylation (H3K4me3) followed by sequencing (ChIP-seq) was performed on sperm to define obesity-associated changes in enrichment. Paternal obesity corresponded with altered sperm H3K4me3 at promoters of genes involved in metabolism and development. Notably, altered sperm H3K4me3 was also localized at placental enhancers. Bulk RNA-sequencing on placentas revealed paternal obesity-associated sex-specific changes in expression of genes involved in hypoxic processes such as angiogenesis, nutrient transport, and imprinted genes, with a subset of de-regulated genes showing changes in H3K4me3 in sperm at corresponding promoters. Paternal obesity was also linked to impaired placenta development; specifically, a deconvolution analysis revealed altered trophoblast cell lineage specification. These findings implicate paternal obesity effects on placenta development and function as one potential developmental route to offspring metabolic disease.

    1. Genetics and Genomics
    Tade Souaiaia, Hei Man Wu ... Paul F O'Reilly
    Research Article

    The use of siblings to infer the factors influencing complex traits has been a cornerstone of quantitative genetics. Here, we utilise siblings for a novel application: the inference of genetic architecture, specifically that relating to individuals with extreme trait values (e.g. in the top 1%). Inferring the genetic architecture most relevant to this group of individuals is important because they are at the greatest risk of disease and may be more likely to harbour rare variants of large effect due to natural selection. We develop a theoretical framework that derives expected distributions of sibling trait values based on an index sibling’s trait value, estimated trait heritability, and null assumptions that include infinitesimal genetic effects and environmental factors that are either controlled for or have combined Gaussian effects. This framework is then used to develop statistical tests powered to distinguish between trait tails characterised by common polygenic architecture from those that include substantial enrichments of de novo or rare variant (Mendelian) architecture. We apply our tests to UK Biobank data here, although we note that they can be used to infer genetic architecture in any cohort or health registry that includes siblings and their trait values, since these tests do not use genetic data. We describe how our approach has the potential to help disentangle the genetic and environmental causes of extreme trait values, and to improve the design and power of future sequencing studies to detect rare variants.