Integration of genomics and transcriptomics predicts diabetic retinopathy susceptibility genes

  1. Andrew D Skol
  2. Segun C Jung
  3. Ana Marija Sokovic
  4. Siquan Chen
  5. Sarah Fazal
  6. Olukayode Sosina
  7. Poulami P Borkar
  8. Amy Lin
  9. Maria Sverdlov
  10. Dingcai Cao
  11. Anand Swaroop
  12. Ionut Bebu
  13. DCCT/ EDIC Study group
  14. Barbara E Stranger  Is a corresponding author
  15. Michael A Grassi  Is a corresponding author
  1. Ann and Robert H Lurie Children's Hospital of Chicago,, United States
  2. NeoGenomics Laboratories, United States
  3. University Of Illinois at Chicago, United States
  4. The University of Chicago, United States
  5. Johns Hopkins University, United States
  6. National Institutes of Health, United States
  7. The George Washington University, United States
  8. Northwestern University Feinberg School of Medicine, United States

Abstract

We determined differential gene expression in response to high glucose in lymphoblastoid cell lines derived from matched individuals with type 1 diabetes with and without retinopathy. Those genes exhibiting the largest difference in glucose response were assessed for association to diabetic retinopathy in a genome-wide association study meta-analysis. Expression Quantitative Trait Loci (eQTLs) of the glucose response genes were tested for association with diabetic retinopathy. We detected an enrichment of the eQTLs from the glucose response genes among small association p-values and identified FLCN as a susceptibility gene for diabetic retinopathy. Expression of FLCN in response to glucose was greater in individuals with diabetic retinopathy. Independent cohorts of individuals with diabetes revealed an association of FLCN eQTLs to diabetic retinopathy. Mendelian randomization confirmed a direct positive effect of increased FLCN expression on retinopathy. Integrating genetic association with gene expression implicated FLCN as a disease gene for diabetic retinopathy.

Data availability

Source files and code for all the figures and tables have been provided, except for drawings, flowcharts and histopathology findings. We have also included links and references where appropriate.Figure 3 source data 5 and 6 are available on Dryad at https://doi.org/10.5061/dryad.zkh18938jAdditional data files can be found here: microarray expression data at Gene Expression Omnibus (GEO) under accession code GSE146615 and diabetic retinopathy GWAS data at UKBB archive (https://oxfile.ox.ac.uk/oxfile/work/extBox?id=825146B4380F72048D).

The following data sets were generated
    1. Skol A et al
    (2020) Figure 3 additional source data files
    Dryad Digital Repository, doi:10.5061/dryad.zkh18938j.
The following previously published data sets were used

Article and author information

Author details

  1. Andrew D Skol

    Department of Pathology and Laboratory Medicine, Ann and Robert H Lurie Children's Hospital of Chicago,, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Segun C Jung

    Research and Development, NeoGenomics Laboratories, Aliso Viejo, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ana Marija Sokovic

    Ophthalmology and Visual Sciences, University Of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Siquan Chen

    Cellular Screening Center, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sarah Fazal

    Cellular Screening Center, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Olukayode Sosina

    Department of Biostatistics, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Poulami P Borkar

    Ophthalmology and Visual Sciences, University Of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Amy Lin

    Ophthalmology and Visual Sciences, University Of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Maria Sverdlov

    Research Histology and Tissue Imaging Core, University Of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Dingcai Cao

    Ophthalmology and Visual Sciences, University Of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Anand Swaroop

    National Eye Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1975-1141
  12. Ionut Bebu

    Biostatistics Center, The George Washington University, Rockville, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. DCCT/ EDIC Study group

  14. Barbara E Stranger

    Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, United States
    For correspondence
    barbara.stranger@northwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
  15. Michael A Grassi

    Ophthalmology and Visual Sciences, University Of Illinois at Chicago, Chicago, United States
    For correspondence
    grassim@uic.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8467-3223

Funding

National Eye Institute (R01EY023644)

  • Michael A Grassi

National Eye Institute (ZIAEY000546)

  • Anand Swaroop

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Skol et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,530
    views
  • 406
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrew D Skol
  2. Segun C Jung
  3. Ana Marija Sokovic
  4. Siquan Chen
  5. Sarah Fazal
  6. Olukayode Sosina
  7. Poulami P Borkar
  8. Amy Lin
  9. Maria Sverdlov
  10. Dingcai Cao
  11. Anand Swaroop
  12. Ionut Bebu
  13. DCCT/ EDIC Study group
  14. Barbara E Stranger
  15. Michael A Grassi
(2020)
Integration of genomics and transcriptomics predicts diabetic retinopathy susceptibility genes
eLife 9:e59980.
https://doi.org/10.7554/eLife.59980

Share this article

https://doi.org/10.7554/eLife.59980

Further reading

    1. Genetics and Genomics
    Thomas E Forman, Marcin P Sajek ... Katherine A Fantauzzo
    Research Article

    Signaling through the platelet-derived growth factor receptor alpha (PDGFRα) plays a critical role in craniofacial development. Phosphatidylinositol 3-kinase (PI3K)/Akt is the primary effector of PDGFRα signaling during mouse skeletal development. We previously demonstrated that Akt phosphorylates the RNA-binding protein serine/arginine-rich splicing factor 3 (Srsf3) downstream of PI3K-mediated PDGFRα signaling in mouse embryonic palatal mesenchyme (MEPM) cells, leading to its nuclear translocation. We further showed that ablation of Srsf3 in the murine neural crest lineage results in severe midline facial clefting and widespread alternative RNA splicing (AS) changes. Here, we demonstrated via enhanced UV-crosslinking and immunoprecipitation of MEPM cells that PDGF-AA stimulation leads to preferential binding of Srsf3 to exons and loss of binding to canonical Srsf3 CA-rich motifs. Through the analysis of complementary RNA-seq data, we showed that Srsf3 activity results in the preferential inclusion of exons with increased GC content and lower intron to exon length ratio. We found that Srsf3 activity downstream of PDGFRα signaling leads to retention of the receptor in early endosomes and increases in downstream PI3K-mediated Akt signaling. Taken together, our findings reveal that growth factor-mediated phosphorylation of an RNA-binding protein underlies gene expression regulation necessary for mammalian craniofacial development.

    1. Genetics and Genomics
    Sugith Badugu, Kshitiza Mohan Dhyani ... Kalappa Muniyappa
    Research Article

    Recent studies have shown that, in human cancer cells, the tetrameric Shieldin complex (comprising REV7, SHLD1, SHLD2, and SHLD3) facilitates non-homologous end-joining (NHEJ) while blocking homologous recombination (HR). Surprisingly, several eukaryotic species lack SHLD1, SHLD2, and SHLD3 orthologs, suggesting that Rev7 may leverage an alternative mechanism to regulate the double-strand break (DSB) repair pathway choice. Exploring this hypothesis, we discovered that Saccharomyces cerevisiae Rev7 physically interacts with the Mre11–Rad50–Xrs2 (MRX) subunits, impedes G-quadruplex DNA synergized HU-induced toxicity, and facilitates NHEJ, while antagonizing HR. Notably, we reveal that a 42-amino acid C-terminal fragment of Rev7 binds to the subunits of MRX complex, protects rev7∆ cells from G-quadruplex DNA-HU-induced toxicity, and promotes NHEJ by blocking HR. By comparison, the N-terminal HORMA domain, a conserved protein–protein interaction module, was dispensable. We further show that the full-length Rev7 impedes Mre11 nuclease and Rad50’s ATPase activities without affecting the latter’s ATP-binding ability. Combined, these results provide unanticipated insights into the functional interaction between the MRX subunits and Rev7 and highlight a previously unrecognized mechanism by which Rev7 facilitates DSB repair via NHEJ, and attenuation of HR, by blocking Mre11 nuclease and Rad50’s ATPase activities in S. cerevisiae.