The nucleus serves as the pacemaker for the cell cycle
Abstract
Mitosis is a dramatic process that affects all parts of the cell. It is driven by an oscillator whose various components are localized in the nucleus, centrosome, and cytoplasm. In principle, the cellular location with the fastest intrinsic rhythm should act as a pacemaker for the process. Here we traced the waves of tubulin polymerization and depolymerization that occur at mitotic entry and exit in Xenopus egg extracts back to their origins. We found that mitosis was commonly initiated at sperm-derived nuclei and their accompanying centrosomes. The cell cycle was ~20% faster at these initiation points than in the slowest regions of the extract. Nuclei produced from phage DNA, which did not possess centrosomes, also acted as trigger wave sources, but purified centrosomes in the absence of nuclei did not. We conclude that the nucleus accelerates mitotic entry and propose that it acts as a pacemaker for cell cycle.
Data availability
All data and code used in the analysis are available from the Stanford Digital Repository (https://purl.stanford.edu/fm814ch0699) for purposes of reproducing or extending the analysis.
-
The nucleus serves as the pacemaker for the cell cycleStanford Digital Repository, fm814ch0699.
Article and author information
Author details
Funding
National Institutes of Health (R01 GM110564)
- James E Ferrell Jr.
National Institutes of Health (R35 GM131792)
- James E Ferrell Jr.
National Institutes of Health (R35 GM120286)
- Tim Stearns
National Institutes of Health (GM007276)
- Garrison K Buss
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols Stanford University (assurance no. A3213-01, protocol 13307).
Copyright
© 2020, Afanzar et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.