The nucleus serves as the pacemaker for the cell cycle

  1. Oshri Afanzar
  2. Garrison K Buss
  3. Tim Stearns
  4. James E Ferrell Jr.  Is a corresponding author
  1. Stanford Medicine, United States
  2. Stanford University, United States

Abstract

Mitosis is a dramatic process that affects all parts of the cell. It is driven by an oscillator whose various components are localized in the nucleus, centrosome, and cytoplasm. In principle, the cellular location with the fastest intrinsic rhythm should act as a pacemaker for the process. Here we traced the waves of tubulin polymerization and depolymerization that occur at mitotic entry and exit in Xenopus egg extracts back to their origins. We found that mitosis was commonly initiated at sperm-derived nuclei and their accompanying centrosomes. The cell cycle was ~20% faster at these initiation points than in the slowest regions of the extract. Nuclei produced from phage DNA, which did not possess centrosomes, also acted as trigger wave sources, but purified centrosomes in the absence of nuclei did not. We conclude that the nucleus accelerates mitotic entry and propose that it acts as a pacemaker for cell cycle.

Data availability

All data and code used in the analysis are available from the Stanford Digital Repository (https://purl.stanford.edu/fm814ch0699) for purposes of reproducing or extending the analysis.

The following data sets were generated

Article and author information

Author details

  1. Oshri Afanzar

    Chemical and Systems Biology, Stanford Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Garrison K Buss

    Molecular and Cellular Physiology, Stanford Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Tim Stearns

    Department of Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0671-6582
  4. James E Ferrell Jr.

    Department of Chemical and Systems Biology and Department of Biochemistry, Stanford Medicine, Stanford, United States
    For correspondence
    james.ferrell@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4767-3926

Funding

National Institutes of Health (R01 GM110564)

  • James E Ferrell Jr.

National Institutes of Health (R35 GM131792)

  • James E Ferrell Jr.

National Institutes of Health (R35 GM120286)

  • Tim Stearns

National Institutes of Health (GM007276)

  • Garrison K Buss

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols Stanford University (assurance no. A3213-01, protocol 13307).

Reviewing Editor

  1. Stefano Di Talia, Duke University, United States

Publication history

  1. Received: June 15, 2020
  2. Accepted: December 6, 2020
  3. Accepted Manuscript published: December 7, 2020 (version 1)
  4. Version of Record published: December 22, 2020 (version 2)
  5. Version of Record updated: December 23, 2020 (version 3)

Copyright

© 2020, Afanzar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,063
    Page views
  • 311
    Downloads
  • 10
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Oshri Afanzar
  2. Garrison K Buss
  3. Tim Stearns
  4. James E Ferrell Jr.
(2020)
The nucleus serves as the pacemaker for the cell cycle
eLife 9:e59989.
https://doi.org/10.7554/eLife.59989

Further reading

    1. Cell Biology
    2. Neuroscience
    Lauritz Kennedy et al.
    Research Article

    Neonatal cerebral hypoxia-ischemia (HI) is the leading cause of death and disability in newborns with the only current treatment being hypothermia. An increased understanding of the pathways that facilitate tissue repair after HI may aid the development of better treatments. Here, we study the role of lactate receptor HCAR1 in tissue repair after neonatal HI in mice. We show that HCAR1 knockout mice have reduced tissue regeneration compared with wildtype mice. Furthermore, proliferation of neural progenitor cells and glial cells, as well as microglial activation was impaired. Transcriptome analysis showed a strong transcriptional response to HI in the subventricular zone of wildtype mice involving about 7300 genes. In contrast, the HCAR1 knockout mice showed a modest response, involving about 750 genes. Notably, fundamental processes in tissue repair such as cell cycle and innate immunity were dysregulated in HCAR1 knockout. Our data suggest that HCAR1 is a key transcriptional regulator of pathways that promote tissue regeneration after HI.

    1. Cell Biology
    2. Developmental Biology
    Swathy Babu et al.
    Research Article

    Btg3-associated nuclear protein (Banp) was originally identified as a nuclear matrix-associated region (MAR)-binding protein and it functions as a tumor suppressor. At the molecular level, Banp regulates transcription of metabolic genes via a CGCG-containing motif called the Banp motif. However, its physiological roles in embryonic development are unknown. Here, we report that Banp is indispensable for the DNA damage response and chromosome segregation during mitosis. Zebrafish banp mutants show mitotic cell accumulation and apoptosis in developing retina. We found that DNA replication stress and tp53-dependent DNA damage responses were activated to induce apoptosis in banp mutants, suggesting that Banp is required for regulation of DNA replication and DNA damage repair. Furthermore, consistent with mitotic cell accumulation, chromosome segregation was not smoothly processed from prometaphase to anaphase in banp morphants, leading to a prolonged M-phase. Our RNA- and ATAC-sequencing identified 31 candidates for direct Banp target genes that carry the Banp motif. Interestingly, a DNA replication fork regulator, wrnip1, and two chromosome segregation regulators, cenpt and ncapg, are included in this list. Thus, Banp directly regulates transcription of wrnip1 for recovery from DNA replication stress, and cenpt and ncapg for chromosome segregation during mitosis. Our findings provide the first in vivo evidence that Banp is required for cell-cycle progression and cell survival by regulating DNA damage responses and chromosome segregation during mitosis.